363 research outputs found
Torsion cycles as non-local magnetic sources in non-orientable spaces
Non-orientable spaces can appear to carry net magnetic charge, even in the
absence of magnetic sources. It is shown that this effect can be understood as
a physical manifestation of the existence of torsion cycles of codimension one
in the homology of space.Comment: 17 pages, 4 figure
Evolving Lorentzian Wormholes
Evolving Lorentzian wormholes with the required matter satisfying the Energy
conditions are discussed. Several different scale factors are used and the
corresponding consequences derived. The effect of extra, decaying (in time)
compact dimensions present in the wormhole metric is also explored and certain
interesting conclusions are derived for the cases of exponential and
Kaluza--Klein inflation.Comment: 10 pages( RevTex, Twocolumn format), Two figures available on request
from the first author. transmission errors corrected
Gravitational Geons on the Brane
In this paper, we examine the possibility of static, spherically symmetric
gravitational geons on a 3 dimensional brane embedded in a 4+1 dimensional
space-time. We choose a specific g_tt for the brane-world space-time metric. We
then calculate g_rr analytically in the weak field limit and numerically for
stronger fields. We show that the induced field equations on the brane do admit
gravitational geon solutions.Comment: 14 pages with 9 figures. To appear in General Relativity and
Gravitatio
A Non - Singular Cosmological Model with Shear and Rotation
We have investigated a non-static and rotating model of the universe with an
imperfect fluid distribution. It is found that the model is free from
singularity and represents an ever expanding universe with shear and rotation
vanishing for large value of time.Comment: 10 pages, late
Quantum geometrodynamics: whence, whither?
Quantum geometrodynamics is canonical quantum gravity with the three-metric
as the configuration variable. Its central equation is the Wheeler--DeWitt
equation. Here I give an overview of the status of this approach. The issues
discussed include the problem of time, the relation to the covariant theory,
the semiclassical approximation as well as applications to black holes and
cosmology. I conclude that quantum geometrodynamics is still a viable approach
and provides insights into both the conceptual and technical aspects of quantum
gravity.Comment: 25 pages; invited contribution for the Proceedings of the seminar
"Quantum Gravity: Challenges and Perspectives", Bad Honnef, Germany, April
200
Nonexistence of marginally trapped surfaces and geons in 2+1 gravity
We use existence results for Jang's equation and marginally outer trapped
surfaces (MOTSs) in 2+1 gravity to obtain nonexistence of geons in 2+1 gravity.
In particular, our results show that any 2+1 initial data set, which obeys the
dominant energy condition with cosmological constant \Lambda \geq 0 and which
satisfies a mild asymptotic condition, must have trivial topology. Moreover,
any data set obeying these conditions cannot contain a MOTS. The asymptotic
condition involves a cutoff at a finite boundary at which a null mean convexity
condition is assumed to hold; this null mean convexity condition is satisfied
by all the standard asymptotic boundary conditions. The results presented here
strengthen various aspects of previous related results in the literature. These
results not only have implications for classical 2+1 gravity but also apply to
quantum 2+1 gravity when formulated using Witten's solution space quantization.Comment: v3: Elements from the original two proofs of the main result have
been combined to give a single proof, thereby circumventing an issue with the
second proof associated with potential blow-ups of solutions to Jang's
equation. To appear in Commun. Math. Phy
Minisuperspace Quantization of "Bubbling AdS" and Free Fermion Droplets
We quantize the space of 1/2 BPS configurations of Type IIB SUGRA found by
Lin, Lunin and Maldacena (hep-th/0409174), directly in supergravity. We use the
Crnkovic-Witten-Zuckerman covariant quantization method to write down the
expression for the symplectic structure on this entire space of solutions. We
find the symplectic form explicitly around AdS_5 x S^5 and obtain a U(1)
Kac-Moody algebra, in precise agreement with the quantization of a system of N
free fermions in a harmonic oscillator potential, as expected from AdS/CFT. As
a cross check, we also perform the quantization around AdS_5 x S^5 by another
method, using the known spectrum of physical perturbations around this
background and find precise agreement with our previous calculation.Comment: 22 Pages + 2 Appendices, JHEP3; v3: explanation of factor 2 mismatch
added, references reordered, published versio
Quantum measurement as driven phase transition: An exactly solvable model
A model of quantum measurement is proposed, which aims to describe
statistical mechanical aspects of this phenomenon, starting from a purely
Hamiltonian formulation. The macroscopic measurement apparatus is modeled as an
ideal Bose gas, the order parameter of which, that is, the amplitude of the
condensate, is the pointer variable. It is shown that properties of
irreversibility and ergodicity breaking, which are inherent in the model
apparatus, ensure the appearance of definite results of the measurement, and
provide a dynamical realization of wave-function reduction or collapse. The
measurement process takes place in two steps: First, the reduction of the state
of the tested system occurs over a time of order , where
is the temperature of the apparatus, and is the number of its degrees of
freedom. This decoherence process is governed by the apparatus-system
interaction. During the second step classical correlations are established
between the apparatus and the tested system over the much longer time-scale of
equilibration of the apparatus. The influence of the parameters of the model on
non-ideality of the measurement is discussed. Schr\"{o}dinger kittens, EPR
setups and information transfer are analyzed.Comment: 35 pages revte
SN 2005cg: Explosion physics and circumstellar interaction of a normal type la supernova in a low-luminosity host
We present the spectral evolution, light curve, and corresponding interpretation for the "normal-bright" Type la supernova 2005cg discovered by ROTSE-IIIc. The host is a low-luminosity (Mr = -16.75) blue galaxy with strong indications of active star formation and an environment similar to that expected for SNe la at high redshifts. Earlytime (t Ì -10 days) optical spectra obtained with the HET reveal an asymmetric, triangular-shaped Si II absorption feature at about 6100 Ă
with a sharp transition to the continuum at a blueshift of about 24,000 km s-1. By 4 days before maximum, the Si n absorption feature becomes symmetric with smoothly curved sides. Similar Si n profile evolution has previously been observed in other supemovae and is predicted by some explosion models, but its significance has not been fully recognized. Although the spectra predicted by pure deflagration and delayed detonation models are similar near maximum light, they predict qualitatively different chemical abundances in the outer layers and thus give qualitatively different spectra at the earliest phases. The Si line observed in SN 2005cg at early times requires the presence of burning products at high velocities, and the triangular shape is likely to be formed in an extended region of slowly declining Si abundance that characterizes delayed detonation models. The spectra show a high-velocity Ca n IR feature that coincides in velocity space with the Si n cutoff. This supports the interpretation that the Ca n is formed when the outer layers of the SN ejecta sweep up about 5 Ă 10-3 M, of material within the progenitor system. We compare our results with other "Branch-normal" SNe la with early-time spectra, namely, SN 2003du, 1999ee, and 1994D. Although the expansion velocities based on their Si n absorption minima differ, all show triangular-shaped profiles and velocity cutoffs between 23,000 and 25,000 km s-1, which are consistent with the Doppler shifts of their respective high-velocity Ca II IR features. SN 1990N-like objects, however, showed distinctly different behavior, which may suggest separate progenitor subclasses
Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology
We discuss the Hamiltonian dynamics for cosmologies coming from Extended
Theories of Gravity. In particular, minisuperspace models are taken into
account searching for Noether symmetries. The existence of conserved quantities
gives selection rule to recover classical behaviors in cosmic evolution
according to the so called Hartle criterion, that allows to select correlated
regions in the configuration space of dynamical variables. We show that such a
statement works for general classes of Extended Theories of Gravity and is
conformally preserved. Furthermore, the presence of Noether symmetries allows a
straightforward classification of singularities that represent the points where
the symmetry is broken. Examples of nonminimally coupled and higher-order
models are discussed.Comment: 20 pages, Review paper to appear in EPJ
- âŠ