9 research outputs found
The Gribov-Zwanziger action in the presence of the gauge invariant, nonlocal mass operator in the Landau gauge
We prove that the nonlocal gauge invariant mass dimension two operator
can be consistently added to the
Gribov-Zwanziger action, which implements the restriction of the path
integral's domain of integration to the first Gribov region when the Landau
gauge is considered. We identify a local polynomial action and prove the
renormalizability to all orders of perturbation theory by employing the
algebraic renormalization formalism. Furthermore, we also pay attention to the
breaking of the BRST invariance, and to the consequences that this has for the
Slavnov-Taylor identity.Comment: 30 page
Analytic properties of the Landau gauge gluon and quark propagators
We explore the analytic structure of the gluon and quark propagators of
Landau gauge QCD from numerical solutions of the coupled system of renormalized
Dyson--Schwinger equations and from fits to lattice data. We find sizable
negative norm contributions in the transverse gluon propagator indicating the
absence of the transverse gluon from the physical spectrum. A simple analytic
structure for the gluon propagator is proposed. For the quark propagator we
find evidence for a mass-like singularity on the real timelike momentum axis,
with a mass of 350 to 500 MeV. Within the employed Green's functions approach
we identify a crucial term in the quark-gluon vertex that leads to a positive
definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev
The Infrared Behaviour of the Pure Yang-Mills Green Functions
We review the infrared properties of the pure Yang-Mills correlators and
discuss recent results concerning the two classes of low-momentum solutions for
them reported in literature; i.e. decoupling and scaling solutions. We will
mainly focuss on the Landau gauge and pay special attention to the results
inferred from the analysis of the Dyson-Schwinger equations of the theory and
from "{\it quenched}" lattice QCD. The results obtained from properly
interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
Neutron imaging at the NIF
The National Ignition Facility neutron imaging system (NIS) is an important diagnostic for understanding ignition experiments at the NIF in late 2010. The goal of the diagnostic is to provide spatially resolved information on the production of prompt and scattered neutrons from imploded ignition targets. This information may be used to diagnose hohlraum drive symmetry and pointing conditions, or study the dynamics of DT burn within the ICF target. In this paper we will discuss NIF relevant neutron imaging issues, goals, and current requirements
Two Decades of Brain Tumour Imaging with O-(2-[F-18]fluoroethyl)-L-tyrosine PET: The Forschungszentrum Julich Experience
Simple Summary PET using radiolabelled amino acids has become an essential tool for diagnosing brain tumours in addition to MRI. O-(2-[F-18]fluoroethyl)-L-tyrosine (FET) is one of the most successful tracers in the field. We analysed our database of 6534 FET PET examinations regarding the diagnostic needs and preferences of the referring physicians for FET PET in the clinical decision-making process. The demand for FET PET increased considerably in the last decade, especially for differentiating tumour progress from treatment-related changes in gliomas. Accordingly, referring physicians rated the diagnostics of recurrent glioma and recurrent brain metastases as the most relevant indication for FET PET. The analysis and survey results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for approval for routine use. O-(2-[F-18]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians' rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET. In 2019, indications for the use of FET PET were as follows: suspected recurrent glioma (46%), unclear brain lesions (20%), treatment monitoring (19%), and suspected recurrent brain metastasis (13%). The referring physicians were neurosurgeons (60%), neurologists (19%), radiation oncologists (11%), general oncologists (3%), and other physicians (7%). Most patients travelled 50 to 75 km, but 9% travelled more than 200 km. The role of FET PET in decision-making in clinical practice was evaluated by a questionnaire consisting of 30 questions, which was filled out by 23 referring physicians with long experience in FET PET. Fifty to seventy per cent rated FET PET as being important for different aspects of the assessment of newly diagnosed gliomas, including differential diagnosis, delineation of tumour extent for biopsy guidance, and treatment planning such as surgery or radiotherapy, 95% for the diagnosis of recurrent glioma, and 68% for the diagnosis of recurrent brain metastases. Approximately 50% of the referring physicians rated FET PET as necessary for treatment monitoring in patients with glioma or brain metastases. All referring physicians stated that the availability of FET PET is essential and that it should be approved for routine use. Although the present analysis is limited by the fact that only physicians who frequently referred patients for FET PET participated in the survey, the results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for its approval for routine use