565 research outputs found
âGeneric visualsâ of Covid-19 in the news: Invoking banal belonging through symbolic reiteration
open4siIn the early days of the Covid-19 pandemic, images of the virus molecule and âflatten-the-curveâ line charts were inescapable. There is now a vast visual repertoire of vaccines, people wearing face masks in everyday settings, choropleth maps and both bar and line charts. These âgeneric visualsâ circulate widely in the news media and, however unremarkable, play an important role in representing the crisis in particular ways. We argue that these generic visuals promote banal nationalism, localism and cosmopolitanism in the face of the crisis, and that they do so through the symbolic reiteration of a range of visual resources across news stories. Through an analysis of three major news outlets in the UK, we examine how generic visuals of Covid-19 contribute to these banal visions and versions of belonging and, in doing so, also to foregrounding the role of the state in responding to the crisis.Article first published online: February 16, 2022
This work was supported by the Arts and Humanities Research Council (grant number AH/T000015/1).openAiello, Giorgia; Kennedy, Helen; Anderson, C.W.; Mørk Røstvik, CamillaAiello, Giorgia; Kennedy, Helen; Anderson, C.W.; Mørk Røstvik, Camill
Finite Density Algorithm in Lattice QCD -- a Canonical Ensemble Approach
I will review the finite density algorithm for lattice QCD based on finite
chemical potential and summarize the associated difficulties. I will propose a
canonical ensemble approach which projects out the finite baryon number sector
from the fermion determinant. For this algorithm to work, it requires an
efficient method for calculating the fermion determinant and a Monte Carlo
algorithm which accommodates unbiased estimate of the probability. I shall
report on the progress made along this direction with the Pad\'{e} - Z
estimator of the determinant and its implementation in the newly developed
Noisy Monte Carlo algorithm.Comment: Invited talk at Nankai Symposium on Mathematical Physics, Tianjin,
Oct. 2001, 18 pages, 3 figures; expanded and references adde
Searching for chiral logs in the static-light decay constant
Using the clover fermion action in unquenched QCD with pion masses as low as
420 MeV, we look for evidence for chiral logs in the static-light decay
constant. There is some evidence for a chiral log term, if the original static
theory of Eichten and Hill is used. However, the more precise data from the
static action of the ALPHA collaboration do not show any evidence for
non-linear dependence of the static-light decay constant on the light quark
mass. We make some comments on the connection between chiral perturbation
theory for decay constants of the pion and static-light meson
Partial-Global Stochastic Metropolis Update for Dynamical Smeared Link Fermions
We performed dynamical simulations with HYP smeared staggered fermions using
the recently proposed partial-global stochastic Metropolis algorithm with
fermion matrix reduction and determinant breakup improvements. In this paper we
discuss our choice of the action parameters and study the autocorrelation time
both with four and two fermionic flavors at different quark mass values on
approximately 10 fm^4 lattices. We find that the update is especially efficient
with two flavors making simulations on larger volumes feasible.Comment: 21 pages, 9 figures; corrected titl
Fault diagnosis of a rotor-bearing system under variable rotating speeds using two-stage parameter transfer and infrared thermal images
Current fault diagnosis methods for rotor-bearing system are mostly based on analyzing the vibration signals collected at steady rotating speeds. In those methods, the data collected under one operating condition cannot be accurately used for diagnosis under a different condition. Moreover, in vibration monitoring, installing the necessary sensors will affect the equipment structure and hence the vibration response itself. The present paper proposes a new method based on two-stage parameter transfer and infrared thermal images for fault diagnosis of rotor-bearing system under variable rotating speeds. The method of parameter transfer enables the use of data (or parameters) acquired under one operating condition (called the source domain) to be extended for use in a different operating condition (called the target domain). First, scaled exponential linear unit (SELU) and modified stochastic gradient descent (MSGD) are used to construct an enhanced convolutional neural network (ECNN). Second, a stacked convolutional auto-encoder (CAE) trained based on unlabeled source-domain thermal images is employed to initialize a source-domain ECNN. Third, model parameters from the pre-trained source-domain ECNN are transferred to the target-domain ECNN to adapt to the characteristics of the target domain. The collected thermal images for a rotor-bearing system under variable speeds are used to test the transfer diagnosis performance of the proposed method. The experimental results demonstrate the performance improvement and the advantages of the proposed method
Innovations in air sampling to detect plant pathogens
Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics
Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease
Funding provided by the National Health and Medical Research Council (NHMRC) of Australia (1027218). P.N. and K.W. are supported by NHMRC Fellowships (1045824, 1090888). P.W. was supported by the William and Marlene Schrader Postgraduate Scholarship, The University of Western Australia, and C.A. by an NHMRC Preterm Infants CRE top-up scholarship.This study tested the utility of optical coherence tomography (OCT)-based indentation to assess mechanical properties of respiratory tissues in disease. Using OCT-based indentation, the elastic modulus of mouse diaphragm was measured from changes in diaphragm thickness in response to an applied force provided by an indenter. We used a transgenic mouse model of chronic lung disease induced by the overexpression of transforming growth factor-alpha (TGF-Îą), established by the presence of pleural and peribronchial fibrosis and impaired lung mechanics determined by the forced oscillation technique and plethysmography. Diaphragm elastic modulus assessed by OCT-based indentation was reduced by TGF-Îą at both left and right lateral locations (p < 0.05). Diaphragm elastic modulus at left and right lateral locations were correlated within mice (r = 0.67, p < 0.01) suggesting that measurements were representative of tissue beyond the indenter field. Co-localised images of diaphragm after TGF-Îą overexpression revealed a layered fibrotic appearance. Maximum diaphragm force in conventional organ bath studies was also reduced by TGF-Îą overexpression (p < 0.01). Results show that OCT-based indentation provided clear delineation of diseased diaphragm, and together with organ bath assessment, provides new evidence suggesting that TGF-Îą overexpression produces impairment in diaphragm function and, therefore, an increase in the work of breathing in chronic lung disease.Publisher PDFPeer reviewe
Ammonite Faunal Dynamics Across Bio-Events During the Mid-and Late Cretaceous Along the Russian Pacific Coast
JagtâYazykova, E.A. 2012. Ammonite faunal dynamics across bioâevents during the mid â and Late Cretaceous along th
Structure, Photophysics and the Order-Disorder Transition to the Beta Phase in Poly(9,9-(di -n,n-octyl)fluorene)
X-ray diffraction, UV-vis absorption and photoluminescence (PL) spectroscopy
have been used to study the well-known order-disorder transition (ODT) to the
beta phase in poly(9,9-(di n,n-octyl)fluorene)) (PF8) thin film samples through
combination of time-dependent and temperature-dependent measurements. The ODT
is well described by a simple Avrami picture of one-dimensional nucleation and
growth but crystallization, on cooling, proceeds only after molecular-level
conformational relaxation to the so called beta phase. Rapid thermal quenching
is employed for PF8 studies of pure alpha phase samples while extended
low-temperature annealing is used for improved beta phase formation. Low
temperature PL studies reveal sharp Franck-Condon type emission bands and, in
the beta phase, two distinguishable vibronic sub-bands with energies of
approximately 199 and 158 meV at 25 K. This improved molecular level structural
order leads to a more complete analysis of the higher-order vibronic bands. A
net Huang-Rhys coupling parameter of just under 0.7 is typically observed but
the relative contributions by the two distinguishable vibronic sub-bands
exhibit an anomalous temperature dependence. The PL studies also identify
strongly correlated behavior between the relative beta phase 0-0 PL peak
position and peak width. This relationship is modeled under the assumption that
emission represents excitons in thermodynamic equilibrium from states at the
bottom of a quasi-one-dimensional exciton band. The crystalline phase, as
observed in annealed thin-film samples, has scattering peaks which are
incompatible with a simple hexagonal packing of the PF8 chains.Comment: Submitted to PRB, 12 files; 1 tex, 1 bbl, 10 eps figure
Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit
Quenched QCD simulations on three volumes, , and
and three couplings, , 5.85 and 6.0 using domain
wall fermions provide a consistent picture of quenched QCD. We demonstrate that
the small induced effects of chiral symmetry breaking inherent in this
formulation can be described by a residual mass (\mres) whose size decreases
as the separation between the domain walls () is increased. However, at
stronger couplings much larger values of are required to achieve a given
physical value of \mres. For and , we find
\mres/m_s=0.033(3), while for , and ,
\mres/m_s=0.074(5), where is the strange quark mass. These values are
significantly smaller than those obtained from a more naive determination in
our earlier studies. Important effects of topological near zero modes which
should afflict an accurate quenched calculation are easily visible in both the
chiral condensate and the pion propagator. These effects can be controlled by
working at an appropriately large volume. A non-linear behavior of in
the limit of small quark mass suggests the presence of additional infrared
subtlety in the quenched approximation. Good scaling is seen both in masses and
in over our entire range, with inverse lattice spacing varying between
1 and 2 GeV.Comment: 91 pages, 34 figure
- âŚ