195 research outputs found

    Dynamics of evaporative cooling in magnetically trapped atomic hydrogen

    Full text link
    We study the evaporative cooling of magnetically trapped atomic hydrogen on the basis of the kinetic theory of a Bose gas. The dynamics of trapped atoms is described by the coupled differential equations, considering both the evaporation and dipolar spin relaxation processes. The numerical time-evolution calculations quantitatively agree with the recent experiment of Bose-Einstein condensation with atomic hydrogen. It is demonstrated that the balance between evaporative cooling and heating due to dipolar relaxation limits the number of condensates to 9x10^8 and the corresponding condensate fraction to a small value of 4% as observed experimentally.Comment: 5 pages, REVTeX, 3 eps figures, Phys. Rev. A in pres

    Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems

    Full text link
    We extend quantum kinetic theory to deal with a strongly Bose-condensed atomic vapor in a trap. The method assumes that the majority of the vapor is not condensed, and acts as a bath of heat and atoms for the condensate. The condensate is described by the particle number conserving Bogoliubov method developed by one of the authors. We derive equations which describe the fluctuations of particle number and phase, and the growth of the Bose-Einstein condensate. The equilibrium state of the condensate is a mixture of states with different numbers of particles and quasiparticles. It is not a quantum superposition of states with different numbers of particles---nevertheless, the stationary state exhibits the property of off-diagonal long range order, to the extent that this concept makes sense in a tightly trapped condensate.Comment: 3 figures submitted to Physical Review

    Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas

    Full text link
    A straight forward numerical technique, based on the Gross-Pitaevskii equation, is used to generate a self-consistent description of thermally-excited states of a dilute boson gas. The process of evaporative cooling is then modelled by following the time evolution of the system using the same equation. It is shown that the subsequent rethermalisation of the thermally-excited state produces a cooler coherent condensate. Other results presented show that trapping vortex states with the ground state may be possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical Review A, 1st February 199

    Nonergodic Behavior of Interacting Bosons in Harmonic Traps

    Full text link
    We study the time evolution of a system of interacting bosons in a harmonic trap. In the low-energy regime, the quantum system is not ergodic and displays rather large fluctuations of the ground state occupation number. In the high energy regime of classical physics we find nonergodic behavior for modest numbers of trapped particles. We give two conditions that assure the ergodic behavior of the quantum system even below the condensation temperature.Comment: 11 pages, 3 PS-figures, uses psfig.st

    Time evolution of condensed state of interacting bosons with reduced number fluctuation in a leaky box

    Full text link
    We study the time evolution of the Bose-Einstein condensate of interacting bosons confined in a leaky box, when its number fluctuation is initially (t=0) suppressed. We take account of quantum fluctuations of all modes, including k = 0. We identify a ``natural coordinate'' b_0 of the interacting bosons, by which many physical properties can be simply described. Using b_0, we successfully define the cosine and sine operators for interacting many bosons. The wavefunction, which we call the ``number state of interacting bosons'' (NSIB), of the ground state that has a definite number N of interacting bosons can be represented simply as a number state of b_0. We evaluate the time evolution of the reduced density operator \rho(t) of the bosons in the box with a finite leakage flux J, in the early time stage for which Jt << N. It is shown that \rho(t) evolves from a single NSIB at t = 0, into a classical mixture of NSIBs of various values of N at t > 0. We define a new state called the ``number-phase squeezed state of interacting bosons'' (NPIB). It is shown that \rho(t) for t>0 can be rewritten as the phase-randomized mixture (PRM) of NPIBs. It is also shown that the off-diagonal long-range order (ODLRO) and the order parameter defined by it do not distinguish the NSIB and NPIB. On the other hand, the other order parameter \Psi, defined as the expectation value of the boson operator, has different values among these states. For each element of the PRM of NPIBs, we show that \Psi evolves from zero to a finite value very quickly. Namely, after the leakage of only two or three bosons, each element acquires a full, stable and definite (non-fluctuating) value of \Psi.Comment: 25 pages including 3 figures. To appear in Phys. Rev. A (1999). The title is changed to stress the time evolution. Sections II, III and IV of the previous manuscript have been combined into one section. The introduction and summary of the previous manuscript have been combined into the Introduction and Summary. The names and abbreviations of quantum states are changed to stress that they are for interacting many bosons. More references are cite

    A particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas

    Get PDF
    The Bogoliubov method for the excitation spectrum of a Bose-condensed gas is generalized to apply to a gas with an exact large number N N of particles. This generalization yields a description of the Schr\"odinger picture field operators as the product of an annihilation operator AA for the total number of particles and the sum of a ``condensate wavefunction'' ξ(x)\xi(x) and a phonon field operator χ(x)\chi(x) in the form ψ(x)A{ξ(x)+χ(x)/N}\psi(x) \approx A\{\xi(x) + \chi(x)/\sqrt{N}\} when the field operator acts on the N particle subspace. It is then possible to expand the Hamiltonian in decreasing powers of N\sqrt{N}, an thus obtain solutions for eigenvalues and eigenstates as an asymptotic expansion of the same kind. It is also possible to compute all matrix elements of field operators between states of different N.Comment: RevTeX, 11 page

    Condensate fluctuations in finite Bose-Einstein condensates at finite temperature

    Full text link
    A Langevin equation for the complex amplitude of a single-mode Bose-Einstein condensate is derived. The equation is first formulated phenomenologically, defining three transport parameters. It is then also derived microscopically. Expressions for the transport parameters in the form of Green-Kubo formulas are thereby derived and evaluated for simple trap geometries, a cubic box with cyclic boundary conditions and an isotropic parabolic trap. The number fluctuations in the condensate, their correlation time, and the temperature-dependent collapse-time of the order parameter as well as its phase-diffusion coefficient are calculated.Comment: 29 pages, Revtex, to appear in Phys.Rev.

    Input-output theory for fermions in an atom cavity

    Full text link
    We generalize the quantum optical input-output theory developed for optical cavities to ultracold fermionic atoms confined in a trapping potential, which forms an "atom cavity". In order to account for the Pauli exclusion principle, quantum Langevin equations for all cavity modes are derived. The dissipative part of these multi-mode Langevin equations includes a coupling between cavity modes. We also derive a set of boundary conditions for the Fermi field that relate the output fields to the input fields and the field radiated by the cavity. Starting from a constant uniform current of fermions incident on one side of the cavity, we use the boundary conditions to calculate the occupation numbers and current density for the fermions that are reflected and transmitted by the cavity
    corecore