346 research outputs found

    Top quark associated production of the neutral top-pion at high energy e+ee^{+}e^{-} colliders

    Full text link
    In the context of topcolor-assisted technicolor (TC2) models, we calculate the associated production of the neutral top-pion πt0\pi_{t}^{0} with a pair of top quarks via the process e+ettˉπt0e^{+}e^{-}\longrightarrow t\bar{t}\pi_{t}^{0}. We find that the production cross section is larger than that of the process e+ettˉH e^{+}e^{-}\longrightarrow t\bar{t}H both in the standard model (SM) and in the minimal supersymmetric SM. With reasonable values of the parameters in TC2 models, the cross section can reach 20fb20fb. The neutral top-pion πt0\pi_{t}^{0} may be direct observed via this process.Comment: Latex files, 10 pages and 3 figure

    Hadron Collider Signatures for New Interactions of Top and Bottom Quarks

    Full text link
    One of the main goals for hadron colliders is the study of the properties of the third generation quarks. We study the signatures for new TeV resonances that couple to top or bottom quarks both at the Tevatron Run II and at the LHC. We find that in the simplest production processes of Drell-Yan type at the Tevatron, the signals are overwhelmed by QCD backgrounds. We also find that it is possible to study these resonances when they are produced in association with a pair of heavy quarks or in association with a single top at the LHC.In particular, with an integrated luminosity of 300 fb1^{-1} at the LHC, it is possible to probe resonance masses up to around 2 TeV.Comment: 24 pages, 15 figures, Minor corrections, version to appear in Phys. Rev.

    Detecting the neutral top-pion at e+ee^{+}e^{-} colliders

    Full text link
    We investigate some processes of the associated production of a neutral top-pion Πt0\Pi^{0}_{t} with a pair of fermions(e+effˉΠt0e^{+}e^{-}\to f\bar{f}\Pi^{0}_{t}) in the context of top-color-assisted technicolor(TC2) theory at future e+ee^{+}e^{-} colliders. The studies show that the largest cross sections of the processes e+effˉΠt0(f=u,d,c,s,μ,τ)e^{+}e^{-}\to f'\bar{f'}\Pi^{0}_{t}(f'=u,d,c,s,\mu,\tau) could only reach the level of 0.01fb, we can hardly detect a neutral top-pion through these processes. For the processes e+ee+eΠt0e^{+}e^{-}\to e^{+}e^{-}\Pi^{0}_{t}, e+ettˉΠt0e^{+}e^{-}\to t\bar{t}\Pi^{0}_{t} and e+ebbˉΠt0e^{+}e^{-}\to b\bar{b}\Pi^{0}_{t}, the cross sections of these processes are at the level of a few fb for the favorable parameters and a few tens, even hundreds, of neutral top-pion events can be produced at future e+ee^{+}e^{-} colliders each year through these processes. With the clean background of the flavor-changing tcˉt\bar{c} channel, the top-pion events can possibly be detected at the planned high luminosity e+ee^{+}e^{-} colliders. Therefore, such neutral top-pion production processes provide a useful way to detect a neutral top-pion and test the TC2 model directly.Comment: 13 pages, 4 figure

    Construction of markov processes from hitting distributions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47648/1/440_2004_Article_BF00538487.pd

    Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation

    Full text link
    The transverse momentum QTQ_T distribution is computed for inclusive Higgs boson production at the energy of the CERN Large Hadron Collider. We focus on the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and incorporate contributions from the quark-gluon and quark-antiquark channels. Using an impact-parameter bb-space formalism, we include all-orders resummation of large logarithms associated with emission of soft gluons. Our resummed results merge smoothly at large QTQ_T with the fixed-order expectations in perturbative quantum chromodynamics, as they should, with no need for a matching procedure. They show a high degree of stability with respect to variation of parameters associated with the non-perturbative input at low QTQ_T. We provide distributions dσ/dydQTd\sigma/dy dQ_T for Higgs boson masses from MZM_Z to 200 GeV. The average transverse momentum at zero rapidity yy grows approximately linearly with mass of the Higgs boson over the range MZ<mh0.18mh+18M_Z < m_h \simeq 0.18 m_h + 18 ~GeV. We provide analogous results for ZZ boson production, for which we compute 25 \simeq 25 GeV. The harder transverse momentum distribution for the Higgs boson arises because there is more soft gluon radiation in Higgs boson production than in ZZ production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in wording. Published in Phys. Rev. D67, 034026 (2003

    tbWt \to b W in NonCommutative Standard Model

    Full text link
    We study the top quark decay to b quark and W boson in the NonCommutative Standard Model (NCSM). The lowest contribution to the decay comes from the terms quadratic in the matrix describing the noncommutative (NC) effects while the linear term is seen to identically vanish because of symmetry. The NC effects are found to be significant only for low values of the NC characteristic scale.Comment: 11 page Latex file containing 2 eps figures (redrawn). More discussion included. To appear in PR

    Single Top Production as a Window to Physics Beyond the Standard Model

    Get PDF
    Production of single top quarks at a high energy hadron collider is studied as a means to identify physics beyond the standard model related to the electroweak symmetry breaking. The sensitivity of the ss-channel WW^* mode, the tt-channel WW-gluon fusion mode, and the \tw mode to various possible forms of new physics is assessed, and it is found that the three modes are sensitive to different forms of new physics, indicating that they provide complimentary information about the properties of the top quark. Polarization observables are also considered, and found to provide potentially useful information about the structure of the interactions of top.Comment: References added and minor discussion improvements; results unchanged; Version to be published in PR

    New hadrons as ultra-high energy cosmic rays

    Get PDF
    Ultra-high energy cosmic ray (UHECR) protons produced by uniformly distributed astrophysical sources contradict the energy spectrum measured by both the AGASA and HiRes experiments, assuming the small scale clustering of UHECR observed by AGASA is caused by point-like sources. In that case, the small number of sources leads to a sharp exponential cutoff at the energy E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve this cutoff problem. For the first time we discuss the production of such hadrons in proton collisions with infrared/optical photons in astrophysical sources. This production mechanism, in contrast to proton-proton collisions, requires the acceleration of protons only to energies E<10^{21} eV. The diffuse gamma-ray and neutrino fluxes in this model obey all existing experimental limits. We predict large UHE neutrino fluxes well above the sensitivity of the next generation of high-energy neutrino experiments. As an example we study hadrons containing a light bottom squark. These models can be tested by accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR

    New lattice approaches to the ΔI=1/2\Delta I=1/2 rule

    Full text link
    Lattice QCD should allow a derivation of the ΔI=1/2\Delta I=1/2 rule from first principles, but numerical calculations to date have been plagued by a variety of problems. After a brief review of these problems, we present several new methods for calculating KππK\to\pi\pi amplitudes. These are designed for Wilson fermions, though they can be used also with staggered fermions. They all involve a non-perturbative determination of matching coefficients. We show how problems of operator mixing can be greatly reduced by using point-split hadronic currents, and how CP violating parts of the KππK\to\pi\pi amplitudes can be calculated by introducing a fake top quark. Many of the methods can also be applied to the calculation of two body non-leptonic B-meson decays.Comment: 22 pages, 1 figure, uses epsfi

    Two-Loop O(alpha_s G_F M_Q^2) Heavy-Quark Corrections to the Interactions between Higgs and Intermediate Bosons

    Full text link
    By means of a low-energy theorem, we analyze at O(alpha_s G_F M_Q^2) the shifts in the Standard-Model W^+W^-H and ZZH couplings induced by virtual high-mass quarks, Q, with M_Q >> M_Z, M_H, which includes the top quark. Invoking the improved Born approximation, we then find the corresponding corrections to various four- and five-point Higgs-boson production and decay processes which involve the W^+W^-H and ZZH vertices with one or both of the gauge bosons being connected to light-fermion currents, respectively. This includes e^+e^- -> f anti-f H via Higgs-strahlung, via W^+W^- fusion (with f = nu_e), and via ZZ fusion (with f = e), as well as H -> 2V -> 4f (with V = W, Z).Comment: 20 pages (Latex); Physical Review D (to appear
    corecore