3 research outputs found

    Sampling the canonical phase from phase-space functions

    Get PDF
    We discuss the possibility of sampling exponential moments of the canonical phase from the s-parametrized phase space functions. We show that the sampling kernels exist and are well-behaved for any s>-1, whereas for s=-1 the kernels diverge in the origin. In spite of that we show that the phase space moments can be sampled with any predefined accuracy from the Q-function measured in the double-homodyne scheme with perfect detectors. We discuss the effect of imperfect detection and address sampling schemes using other measurable phase-space functions. Finally, we discuss the problem of sampling the canonical phase distribution itself.Comment: 10 pages, 7 figures, REVTe

    Quantum inference of states and processes

    Get PDF
    The maximum-likelihood principle unifies inference of quantum states and processes from experimental noisy data. Particularly, a generic quantum process may be estimated simultaneously with unknown quantum probe states provided that measurements on probe and transformed probe states are available. Drawbacks of various approximate treatments are considered.Comment: 7 pages, 4 figure
    corecore