1,032 research outputs found

    Nonadiabatic quantum pumping in mesoscopic nanostructures

    Full text link
    We consider a nonadiabatic quantum pumping phenomena in a ballistic narrow constriction. The pumping is induced by a potential that has both spatial and temporal periodicity characterized by KK and Ω\Omega. In the zero frequency (Ω=0\Omega=0) limit, the transmission through narrow constriction exhibits valley structures due to the opening up of energy gaps in the pumping region -- a consequence of the KK periodicity. These valley structures remain robust in the regime of finite Ω\Omega, while their energies of occurrence are shifted by about Ω/2\hbar\Omega/2. The direction of these energy shifts depend on the directions of both the phase-velocity of the pumping potential and the transmitting electrons. This frequency dependent feature of the valley structures gives rise to both the asymmetry in the transmission coefficients and the pumping current. An experimental setup is suggested for a possible observation of our nonadiabatic quantum pumping findings.Comment: 4 pages, 2 figure

    Classification and nondegeneracy of SU(n+1)SU(n+1) Toda system with singular sources

    Full text link
    We consider the following Toda system \Delta u_i + \D \sum_{j = 1}^n a_{ij}e^{u_j} = 4\pi\gamma_{i}\delta_{0} \text{in}\mathbb R^2, \int_{\mathbb R^2}e^{u_i} dx -1,, \delta_0isDiracmeasureat0,andthecoefficients is Dirac measure at 0, and the coefficients a_{ij}formthestandardtridiagonalCartanmatrix.Inthispaper,(i)wecompletelyclassifythesolutionsandobtainthequantizationresult: form the standard tri-diagonal Cartan matrix. In this paper, (i) we completely classify the solutions and obtain the quantization result: j=1naijR2eujdx=4π(2+γi+γn+1i),      1in.\sum_{j=1}^n a_{ij}\int_{\R^2}e^{u_j} dx = 4\pi (2+\gamma_i+\gamma_{n+1-i}), \;\;\forall\; 1\leq i \leq n.ThisgeneralizestheclassificationresultbyJostandWangfor This generalizes the classification result by Jost and Wang for \gamma_i=0,, \forall \;1\leq i\leq n.(ii)Weprovethatif. (ii) We prove that if \gamma_i+\gamma_{i+1}+...+\gamma_j \notin \mathbb Zforall for all 1\leq i\leq j\leq n,thenanysolution, then any solution u_i$ is \textit{radially symmetric} w.r.t. 0. (iii) We prove that the linearized equation at any solution is \textit{non-degenerate}. These are fundamental results in order to understand the bubbling behavior of the Toda system.Comment: 28 page

    Saturation and Wilson Line Distributions

    Get PDF
    We introduce a Wilson line distribution function bar{W}_tau(v) to study gluon saturation at small Feynman x_F, or large tau=ln(1/x_F). This new distribution can be obtained from the distribution W_tau(alpha) of the Color Glass Condensate model and the JIMWLK renormalization group equation. bar{W}_tau(v) is physically more relevant, and mathematically simpler to deal with because of unitarity of the Wilson line v. A JIMWLK equation is derived for bar{W}_tau(v); its properties are studied. These properties are used to complete Mueller's derivation of the JIMWLK equation, though for bar{W}_tau(v) and not W_tau(alpha). They are used to derive a generalized Balitsky-Kovchegov equation for higher multipole amplitudes. They are also used to compute the unintegrated gluon distribution at x_F=0, yielding a completely flat spectrum in transverse momentum squared k^2, with a known height. This is similar but not identical to the mean field result at small k^2.Comment: One reference and two short comments added. To appear in Physical Revies

    Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry

    Full text link
    The energy spectra and the corresponding two- component spinor wavefunctions of the Dirac equation for the Rosen-Morse potential with spin and pseudospin symmetry are obtained. The ss-wave (κ=0\kappa = 0 state) solutions for this problem are obtained by using the basic concept of the supersymmetric quantum mechanics approach and function analysis (standard approach) in the calculations. Under the spin symmetry and pseudospin symmetry, the energy equation and the corresponding two-component spinor wavefunctions for this potential and other special types of this potential are obtained. Extension of this result to κ0\kappa \neq 0 state is suggested.Comment: 18 page

    Supersymmetric CP Violation in BXsl+lB \to X_s l^+ l^- in Minimal Supergravity Model

    Full text link
    Direct CP asymmetries and the CP violating normal polarization of lepton in inclusive decay B \to X_s l^+ l^- are investigated in minimal supergravity model with CP violating phases. The contributions coming from exchanging neutral Higgs bosons are included. It is shown that the direct CP violation in branching ratio, A_{CP}^1, is of {\cal{O}}(10^{-3}) for l=e, \mu, \tau. The CP violating normal polarization for l=\mu can reach 0.5 percent when tan\beta is large (say, 36). For l=\tau and in the case of large \tan\beta, the direct CP violation in backward-forward asymmetry, A_{CP}^2, can reach one percent, the normal polarization of \tau can be as large as a few percent, and both are sensitive to the two CP violating phases, \phi_\mu and \phi_{A_0}, and consequently it could be possible to observe them (in particular, the normal polarization of \tau) in the future B factories.Comment: 14 pages, latex, 5 figure

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    First principle study of intrinsic defects in hexagonal tungsten carbide

    Full text link
    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in WC. Our calculation results confirm that the formation energies of carbon defects are much lower than that of tungsten defects. The outward relaxations around vacancy are found. Both interstitial carbon and interstitial tungsten atom prefer to occupy the carbon basal plane projection of octahedral interstitial site. The results of isolated carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerable lower activation energy. These results provide evidence for the presumption that the 800K stage is attributed by the annealing out of carbon vacancies by long-range migration.Comment: Submitted to Journal of Nuclear Material

    Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity

    Full text link
    In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.Comment: 12 page

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure
    corecore