63 research outputs found
Recommended from our members
SPECIATION OF INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN FOSSIL FUEL PRECURSORS AND PRODUCTS
Initial observations of mesospheric winds using IDI radar measurements at the Bear Lake Observatory
The adaptation of Imaging Doppler Interferometry (IDI) to the dynasonde deployed at the Bear Lake Observatory (41.9°N, 111.4°W) in northeastern Utah enables the routine measurement of mesospheric dynamics. Influenced by the direction of the prevailing wind, a clear seasonal variation is seen in the mesospheric echo numbers. The technique also provides a monitor for the amplitude of the main tidal modes as well as for studying planetary waves with periods of several days. The observations are found to be consistent with those from different instruments based at the same site thus confirming the IDI characterisation of the mesospheric wind field
Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES) Mission Concept
The goal of SOCRATES is to quantify the critical role of the upper troposphere/lower stratosphere (UTLS) in the climate system. The mission would provide, for the first time, the suite of measurements required to quantify stratosphere/troposphere exchange (STE) pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of potential changes in STE pathways with climate change. The discrimination and quantification of STE pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosol and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 μm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of STE (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only a few percent of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Venture mission. The SOCRATES mission concept is an 8-element constellation of autonomous nano-satellites, each mated with a GLO sensor, deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the SOCRATES mission and GLO instrument concepts
Implications of Non-Specific Effects for Testing, Approving, and Regulating Vaccines.
The current framework for testing and regulating vaccines was established before the realization that vaccines, in addition to their effect against the vaccine-specific disease, may also have "non-specific effects" affecting the risk of unrelated diseases. Accumulating evidence from epidemiological studies shows that vaccines in some situations can affect all-cause mortality and morbidity in ways that are not explained by the prevention of the vaccine-targeted disease. Live attenuated vaccines have sometimes been associated with decreases in mortality and morbidity that are greater than anticipated. In contrast, some non-live vaccines have in certain contexts been associated with increases in all-cause mortality and morbidity. The non-specific effects are often greater for female than male individuals. Immunological studies have provided several mechanisms that explain how vaccines might modulate the immune response to unrelated pathogens, such as through trained innate immunity, emergency granulopoiesis, and heterologous T-cell immunity. These insights suggest that the framework for the testing, approving, and regulating vaccines needs to be updated to accommodate non-specific effects. Currently, non-specific effects are not routinely captured in phase I-III clinical trials or in the post-licensure safety surveillance. For instance, an infection with Streptococcus pneumoniae occurring months after a diphtheria-tetanus-pertussis vaccination would not be considered an effect of the vaccination, although evidence indicates it might well be for female individuals. Here, as a starting point for discussion, we propose a new framework that considers the non-specific effects of vaccines in both phase III trials and post-licensure
- …