112 research outputs found
The Absorptive Extra Dimensions
It is well known that gravity and neutrino oscillation can be used to probe
large extra dimensions in a braneworld scenario. We argue that neutrino
oscillation remains a useful probe even when the extra dimensions are small,
because the brane-bulk coupling is likely to be large. Neutrino oscillation in
the presence of a strong brane-bulk coupling is vastly different from the usual
case of a weak coupling. In particular, some active neutrinos could be absorbed
by the bulk when they oscillate from one kind to another, a signature which can
be taken as the presence of an extra dimension. In a very large class of models
which we shall discuss, the amount of absorption for all neutrino oscillations
is controlled by a single parameter, a property which distinguishes extra
dimensions from other mechanisms for losing neutrino fluxes.Comment: Introduction enlarged; conclusions added. To appear in Phys. Rev.
Large Mixing Induced by the Strong Coupling with a Single Bulk Neutrinos
Neutrino is a good probe of extra dimensions. Large mixing and the apparent
lack of very complicated oscillation patterns may be an indication of large
couplings between the brane and a single bulk neutrino. A simple and realistic
five-dimensional model of this kind is discussed. It requires a sterile in
addition to three active neutrinos on the brane, all coupled strongly to one
common bulk neutrino, but not directly among themselves. Mindful that sterile
neutrinos are disfavored in the atmospheric and solar data, we demand induced
mixing to occur among the active neutrinos, but not between the active and the
sterile. The size of the extra dimension is arbitrary in this model,
otherwise it contains six parameters which can be used to fit the three
neutrino masses and the three mixing angles. However, in the model those six
parameters must be suitably ordered, so a successful fit is not guaranteed. It
turns out that not only the data can be fitted, but as a result of the
ordering, a natural connection between the smallness of the reactor angle
and the smallness of the mass-gap ratio can be derived.Comment: Misprints above eq. (22) corrected. To appear in PR
Manifestations of Extra Dimensions in a Neutrino Telescope
Theories with large extra dimensions provide the possibility that a flavor
neutrino, localized in a 3+1 brane, can mix with a singlet neutrino living in
the bulk. This mixing leads to unconventional patterns of neutrino matter
oscillations and we examine in details how these oscillations depend upon two
parameters: the brane-bulk coupling and the effective mass of the
flavor neutrino inside matter. We find that high energy GeV)
neutrinos, to be detected by neutrino telescopes, can give signals of
extra dimensions. With a 1 k neutrino telescope extra dimensions with
radius down to can be tested directly, while for smaller radius an
indirect evidence can be established.Comment: 14 pages, 5 figures, added conclusion
An accelerated closed universe
We study a model in which a closed universe with dust and quintessence matter
components may look like an accelerated flat Friedmann-Robertson-Walker (FRW)
universe at low redshifts. Several quantities relevant to the model are
expressed in terms of observed density parameters, and
, and of the associated density parameter related
to the quintessence scalar field .Comment: 11 pages. For a festschrift honoring Alberto Garcia. To appear in
Gen. Rel. Gra
A scheme with two large extra dimensions confronted with neutrino physics
We investigate a particle physics model in a six-dimensional spacetime, where
two extra dimensions form a torus. Particles with Standard Model charges are
confined by interactions with a scalar field to four four-dimensional branes,
two vortices accommodating ordinary type fermions and two antivortices
accommodating mirror fermions. We investigate the phenomenological implications
of this multibrane structure by confronting the model with neutrino physics
data.Comment: LATEX, 24 pages, 9 figures, minor changes in the tex
Observational Constraints on Chaplygin Quartessence: Background Results
We derive the constraints set by several experiments on the quartessence
Chaplygin model (QCM). In this scenario, a single fluid component drives the
Universe from a nonrelativistic matter-dominated phase to an accelerated
expansion phase behaving, first, like dark matter and in a more recent epoch
like dark energy. We consider current data from SNIa experiments, statistics of
gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in
galaxy clusters. We investigate the constraints from this data set on flat
Chaplygin quartessence cosmologies. The observables considered here are
dependent essentially on the background geometry, and not on the specific form
of the QCM fluctuations. We obtain the confidence region on the two parameters
of the model from a combined analysis of all the above tests. We find that the
best-fit occurs close to the CDM limit (). The standard
Chaplygin quartessence () is also allowed by the data, but only at
the level.Comment: Replaced to match the published version, references update
Linear and non-linear perturbations in dark energy models
I review the linear and second-order perturbation theory in dark energy
models with explicit interaction to matter in view of applications to N-body
simulations and non-linear phenomena. Several new or generalized results are
obtained: the general equations for the linear perturbation growth; an
analytical expression for the bias induced by a species-dependent interaction;
the Yukawa correction to the gravitational potential due to dark energy
interaction; the second-order perturbation equations in coupled dark energy and
their Newtonian limit. I also show that a density-dependent effective dark
energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a
typ
Scenario of Accelerating Universe from the Phenomenological \Lambda- Models
Dark matter, the major component of the matter content of the Universe,
played a significant role at early stages during structure formation. But at
present the Universe is dark energy dominated as well as accelerating. Here,
the presence of dark energy has been established by including a time-dependent
term in the Einstein's field equations. This model is compatible with
the idea of an accelerating Universe so far as the value of the deceleration
parameter is concerned. Possibility of a change in sign of the deceleration
parameter is also discussed. The impact of considering the speed of light as
variable in the field equations has also been investigated by using a well
known time-dependent model.Comment: Latex, 9 pages, Major change
Cosmological consequences of a Chaplygin gas dark energy
A combination of recent observational results has given rise to what is
currently known as the dark energy problem. Although several possible
candidates have been extensively discussed in the literature to date the nature
of this dark energy component is not well understood at present. In this paper
we investigate some cosmological implications of another dark energy candidate:
an exotic fluid known as the Chaplygin gas, which is characterized by an
equation of state , where is a positive constant. By assuming
a flat scenario driven by non-relativistic matter plus a Chaplygin gas dark
energy we study the influence of such a component on the statistical properties
of gravitational lenses. A comparison between the predicted age of the universe
and the latest age estimates of globular clusters is also included and the
results briefly discussed. In general, we find that the behavior of this class
of models may be interpreted as an intermediary case between the standard and
CDM scenarios.Comment: 7 pages, 5 figures, to appear in Phys. Rev.
- …