112 research outputs found

    The Absorptive Extra Dimensions

    Full text link
    It is well known that gravity and neutrino oscillation can be used to probe large extra dimensions in a braneworld scenario. We argue that neutrino oscillation remains a useful probe even when the extra dimensions are small, because the brane-bulk coupling is likely to be large. Neutrino oscillation in the presence of a strong brane-bulk coupling is vastly different from the usual case of a weak coupling. In particular, some active neutrinos could be absorbed by the bulk when they oscillate from one kind to another, a signature which can be taken as the presence of an extra dimension. In a very large class of models which we shall discuss, the amount of absorption for all neutrino oscillations is controlled by a single parameter, a property which distinguishes extra dimensions from other mechanisms for losing neutrino fluxes.Comment: Introduction enlarged; conclusions added. To appear in Phys. Rev.

    Large Mixing Induced by the Strong Coupling with a Single Bulk Neutrinos

    Get PDF
    Neutrino is a good probe of extra dimensions. Large mixing and the apparent lack of very complicated oscillation patterns may be an indication of large couplings between the brane and a single bulk neutrino. A simple and realistic five-dimensional model of this kind is discussed. It requires a sterile in addition to three active neutrinos on the brane, all coupled strongly to one common bulk neutrino, but not directly among themselves. Mindful that sterile neutrinos are disfavored in the atmospheric and solar data, we demand induced mixing to occur among the active neutrinos, but not between the active and the sterile. The size RR of the extra dimension is arbitrary in this model, otherwise it contains six parameters which can be used to fit the three neutrino masses and the three mixing angles. However, in the model those six parameters must be suitably ordered, so a successful fit is not guaranteed. It turns out that not only the data can be fitted, but as a result of the ordering, a natural connection between the smallness of the reactor angle θ13\theta_{13} and the smallness of the mass-gap ratio ΔMsolar2/ΔMatmospheric2\Delta M^2_{solar}/\Delta M^2_{atmospheric} can be derived.Comment: Misprints above eq. (22) corrected. To appear in PR

    Manifestations of Extra Dimensions in a Neutrino Telescope

    Get PDF
    Theories with large extra dimensions provide the possibility that a flavor neutrino, localized in a 3+1 brane, can mix with a singlet neutrino living in the bulk. This mixing leads to unconventional patterns of neutrino matter oscillations and we examine in details how these oscillations depend upon two parameters: the brane-bulk coupling ξ\xi and the effective mass μ\mu of the flavor neutrino inside matter. We find that high energy (E50(E \ge 50 GeV) νμ\nu_\mu neutrinos, to be detected by neutrino telescopes, can give signals of extra dimensions. With a 1 km3m^{3} neutrino telescope extra dimensions with radius down to 1μm1\mu m can be tested directly, while for smaller radius an indirect evidence can be established.Comment: 14 pages, 5 figures, added conclusion

    An accelerated closed universe

    Full text link
    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, ΩM\Omega_M and ΩΛ\Omega_{\Lambda}, and of the associated density parameter ΩQ\Omega_Q related to the quintessence scalar field QQ.Comment: 11 pages. For a festschrift honoring Alberto Garcia. To appear in Gen. Rel. Gra

    A scheme with two large extra dimensions confronted with neutrino physics

    Full text link
    We investigate a particle physics model in a six-dimensional spacetime, where two extra dimensions form a torus. Particles with Standard Model charges are confined by interactions with a scalar field to four four-dimensional branes, two vortices accommodating ordinary type fermions and two antivortices accommodating mirror fermions. We investigate the phenomenological implications of this multibrane structure by confronting the model with neutrino physics data.Comment: LATEX, 24 pages, 9 figures, minor changes in the tex

    Observational Constraints on Chaplygin Quartessence: Background Results

    Full text link
    We derive the constraints set by several experiments on the quartessence Chaplygin model (QCM). In this scenario, a single fluid component drives the Universe from a nonrelativistic matter-dominated phase to an accelerated expansion phase behaving, first, like dark matter and in a more recent epoch like dark energy. We consider current data from SNIa experiments, statistics of gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in galaxy clusters. We investigate the constraints from this data set on flat Chaplygin quartessence cosmologies. The observables considered here are dependent essentially on the background geometry, and not on the specific form of the QCM fluctuations. We obtain the confidence region on the two parameters of the model from a combined analysis of all the above tests. We find that the best-fit occurs close to the Λ\LambdaCDM limit (α=0\alpha=0). The standard Chaplygin quartessence (α=1\alpha=1) is also allowed by the data, but only at the 2σ\sim2\sigma level.Comment: Replaced to match the published version, references update

    Linear and non-linear perturbations in dark energy models

    Full text link
    I review the linear and second-order perturbation theory in dark energy models with explicit interaction to matter in view of applications to N-body simulations and non-linear phenomena. Several new or generalized results are obtained: the general equations for the linear perturbation growth; an analytical expression for the bias induced by a species-dependent interaction; the Yukawa correction to the gravitational potential due to dark energy interaction; the second-order perturbation equations in coupled dark energy and their Newtonian limit. I also show that a density-dependent effective dark energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a typ

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Cosmological consequences of a Chaplygin gas dark energy

    Get PDF
    A combination of recent observational results has given rise to what is currently known as the dark energy problem. Although several possible candidates have been extensively discussed in the literature to date the nature of this dark energy component is not well understood at present. In this paper we investigate some cosmological implications of another dark energy candidate: an exotic fluid known as the Chaplygin gas, which is characterized by an equation of state p=A/ρp = -A/\rho, where AA is a positive constant. By assuming a flat scenario driven by non-relativistic matter plus a Chaplygin gas dark energy we study the influence of such a component on the statistical properties of gravitational lenses. A comparison between the predicted age of the universe and the latest age estimates of globular clusters is also included and the results briefly discussed. In general, we find that the behavior of this class of models may be interpreted as an intermediary case between the standard and Λ\LambdaCDM scenarios.Comment: 7 pages, 5 figures, to appear in Phys. Rev.
    corecore