235 research outputs found
Critical phenomena in Newtonian gravity
We investigate the stability of self-similar solutions for a gravitationally
collapsing isothermal sphere in Newtonian gravity by means of a normal mode
analysis. It is found that the Hunter series of solutions are highly unstable,
while neither the Larson-Penston solution nor the homogeneous collapse one have
an analytic unstable mode. Since the homogeneous collapse solution is known to
suffer the kink instability, the present result and recent numerical
simulations strongly support a proposition that the Larson-Penston solution
will be realized in astrophysical situations. It is also found that the Hunter
(A) solution has a single unstable mode, which implies that it is a critical
solution associated with some critical phenomena which are analogous to those
in general relativity. The critical exponent is calculated as
. In contrast to the general relativistic case, the order
parameter will be the collapsed mass. In order to obtain a complete picture of
the Newtonian critical phenomena, full numerical simulations will be needed.Comment: 25 pages, 7 figures, accepted for publication in Physical Review
Potential Added Value of Psychological Capital in Predicting Work Attitudes
Meeting the challenge of effectively managing human resources requires new thinking and approaches. To extend the traditional perspective of economic capital, increasing recognition is being given to human capital and more recently social capital, this article proposes and empirically tests the potential added value that psychological capital may have for employee attitudes of satisfaction and commitment. After first providing the background and theory of PsyCap, this article reports a study of manufacturing employees (N = 74) that found a significant relationship between PsyCap and job satisfaction (r=.373) and organization commitment (r=.313). Importantly, the employees’ PsyCap had a significant added impact over human and social capital on these work attitudes. Future research and practical implications conclude the article
BINGO: A code for the efficient computation of the scalar bi-spectrum
We present a new and accurate Fortran code, the BI-spectra and
Non-Gaussianity Operator (BINGO), for the efficient numerical computation of
the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field
inflationary models involving the canonical scalar field. The code can
calculate all the different contributions to the bi-spectrum and the parameter
f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing
firstly on the equilateral limit, we illustrate the accuracy of BINGO by
comparing the results from the code with the spectral dependence of the
bi-spectrum expected in power law inflation. Then, considering an arbitrary
triangular configuration, we contrast the numerical results with the analytical
expression available in the slow roll limit, for, say, the case of the
conventional quadratic potential. Considering a non-trivial scenario involving
deviations from slow roll, we compare the results from the code with the
analytical results that have recently been obtained in the case of the
Starobinsky model in the equilateral limit. As an immediate application, we
utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL}
to discriminate between various inflationary models that admit departures from
slow roll and lead to similar features in the scalar power spectrum. We close
with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed,
extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO
code is available online at
http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
abYsis: Integrated Antibody Sequence and Structure-Management, Analysis, and Prediction
abYsis is a web-based antibody research system that includes an integrated database of antibody sequence and structure data. The system can be interrogated in numerous ways-from simple text and sequence searches to sophisticated queries that apply 3D structural constraints. The publicly available version includes pre-analyzed sequence data from the European Molecular Biology Laboratory European Nucleotide Archive (EMBL-ENA) and Kabat as well as structure data from the Protein Data Bank. A researcher's own sequences can also be analyzed through the web interface. A defining characteristic of abYsis is that the sequences are automatically numbered with a series of popular schemes such as Kabat and Chothia and then annotated with key information such as complementarity-determining regions and potential post-translational modifications. A unique aspect of abYsis is a set of residue frequency tables for each position in an antibody, allowing "unusual residues" (those rarely seen at a particular position) to be highlighted and decisions to be made on which mutations may be acceptable. This is especially useful when comparing antibodies from different species. abYsis is useful for any researcher specializing in antibody engineering, especially those developing antibodies as drugs. abYsis is available at www.abysis.org
Analogous intruder behavior near Ni, Sn, and Pb isotopes
Near shell closures, the presence of unexpected states at low energies provides a critical test of our understanding of the atomic nucleus. New measurements for the N=42 isotones Co2769 and Cu2971, along with recent data and calculations in the Ni isotopes, establish a full set of complementary, deformed, intruder states astride the closed-shell Ni28 isotopes. Nuclei with a one-proton hole or one-proton particle adjacent to Z=28 were populated in β-decay experiments and in multinucleon transfer reactions. A β-decaying isomer, with a 750(250)-ms half-life, has been identified in Co422769. It likely has low spin and accompanies the previously established 7/2- state. Complementary data for the levels of isotonic Cu422971 support the presence of a deformed, ΔJ=1 band built on the proton intruder 7/2- level at 981 keV. These data, together with recent studies of lower-mass Co and Cu isotopes and extensive work near Ni68, support the view that intruder states based on particle-hole excitations accompany all closed proton shells with Z≥28
Search for intruder states in 68Ni and 67Co
The level schemes of 68Ni and 67Co were extended following 70Zninduced deep-inelastic reactions. No evidence for a previously reported proton intruder 0+ state at 2202 keV in 68Ni was found. In 67Co, two new states at 3216 and 3415 keV have been established; additional states associated with the intruder configuration have yet to be identified
Low-spin states and the non-observation of a proposed 2202-keV, 0 + isomer in 68Ni
The low-spin level scheme of 68Ni was investigated with the Gammasphere array following reactions between a 70Zn beam and 238U, 208Pb, and 197Au targets. Spin assignments for some states have been verified through γ-ray angular correlations, including the 0+ assignment for the 2511-keV level. Two previously unknown states at 3302 and 3405 keV have been identified. No evidence was found for a recently reported 216-ns, 0+ isomer at 2202 keV that was attributed to a proton two-particle, two-hole intruder configuration, despite experimental conditions similar to those used in the measurement reporting its discovery
An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex
The North American Ice Sheet Complex (NAISC; consisting of the Laurentide, Cordilleran and Innuitian ice sheets) was the largest ice mass to repeatedly grow and decay in the Northern Hemisphere during the Quaternary. Understanding its pattern of retreat following the Last Glacial Maximum is critical for studying many facets of the Late Quaternary, including ice sheet behaviour, the evolution of Holocene landscapes, sea level, atmospheric circulation, and the peopling of the Americas. Currently, the most up-to-date and authoritative margin chronology for the entire ice sheet complex is featured in two publications (Geological Survey of Canada Open File 1574 [Dyke et al., 2003]; ‘Quaternary Glaciations – Extent and Chronology, Part II’ [Dyke, 2004]). These often-cited datasets track ice margin recession in 36 time slices spanning 18 ka to 1 ka (all ages in uncalibrated radiocarbon years) using a combination of geomorphology, stratigraphy and radiocarbon dating. However, by virtue of being over 15 years old, the ice margin chronology requires updating to reflect new work and important revisions. This paper updates the aforementioned 36 ice margin maps to reflect new data from regional studies. We also update the original radiocarbon dataset from the 2003/2004 papers with 1541 new ages to reflect work up to and including 2018. A major revision is made to the 18 ka ice margin, where Banks and Eglinton islands (once considered to be glacial refugia) are now shown to be fully glaciated. Our updated 18 ka ice sheet increased in areal extent from 17.81 to 18.37 million km2, which is an increase of 3.1% in spatial coverage of the NAISC at that time. Elsewhere, we also summarize, region-by-region, significant changes to the deglaciation sequence. This paper integrates new information provided by regional experts and radiocarbon data into the deglaciation sequence while maintaining consistency with the original ice margin positions of Dyke et al. (2003) and Dyke (2004) where new information is lacking; this is a pragmatic solution to satisfy the needs of a Quaternary research community that requires up-to-date knowledge of the pattern of ice margin recession of what was once the world’s largest ice mass. The 36 updated isochrones are available in PDF and shapefile format, together with a spreadsheet of the expanded radiocarbon dataset (n = 5195 ages) and estimates of uncertainty for each interval
- …