11 research outputs found

    Comparison of genetic diversities in native and alien populations of hoary mustard (Hirschfeldia incana [L.] Lagreze-Fossat)

    Full text link
    Increased selfing and inbreeding and, consequently, depauperate genetic diversities are commonly expected for alien colonies. We compared RAPDs data for native (southern Europe) and alien (British Isles) populations of hoary mustard (Hirschfeldia incana). This species is normally out-breeding, but it is capable of self- fertilization. Contrary to the common expectations, genetic diversities in native and alien populations were similar, without any strong evidence of decreased levels of genetic diversities in alien populations. A variety of factors may have contributed to this observation, including high variation in founding groups, founders originating from multiple H. incana source populations, and high rates of past and/or current gene flow. A review of other studies showed that this pattern of similar genetic diversities in native and alien populations was not unusual but has been regularly observed in other invasive plant species

    A New Analysis of Mars ‘‘Special Regions’’: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2)

    No full text
    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth—including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as ‘‘Uncertain’’ or ‘‘Special’’ as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation ofwhere Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity
    corecore