74 research outputs found

    Three-Dimensional Simulations of Tearing and Intermittency in Coronal Jets

    Get PDF
    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work, we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical outflows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak-field region in the center of the current layer are associated with "blobs" of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent outflows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined

    A Model for Coronal Hole Bright Points and Jets Due to Moving Magnetic Elements

    Get PDF
    Coronal jets and bright points occur prolifically in predominantly unipolar magnetic regions, such as coronal holes (CHs), where they appear above minority-polarity intrusions. Intermittent low-level reconnection and explosive, high-energy-release reconnection above these intrusions are thought to generate bright points and jets, respectively. The magnetic field above the intrusions possesses a spine-fan topology with a coronal null point. The movement of magnetic flux by surface convection adds free energy to this field, forming current sheets and inducing reconnection. We conducted three-dimensional magnetohydrodynamic simulations of moving magnetic elements as a model for coronal jets and bright points. A single minority-polarity concentration was subjected to three different experiments: a large-scale surface flow that sheared part of the separatrix surface only, a large-scale surface flow that also sheared part of the polarity inversion line surrounding the minority flux, and the latter flow setup plus a "flyby" of a majority-polarity concentration past the moving minority-polarity element. We found that different bright-point morphologies, from simple loops to sigmoids, were created. When only the field near the separatrix was sheared, steady interchange reconnection modulated by quasi-periodic, low-intensity bursts of reconnection occurred, suggestive of a bright point with periodically varying intensity. When the field near the polarity inversion line was strongly sheared, on the other hand, filament channels repeatedly formed and erupted via the breakout mechanism, explosively increasing the interchange reconnection and generating nonhelical jets. The flyby produced even more energetic and explosive jets. Our results explain several key aspects of CH bright points and jets, and the relationships between them

    Effects of Pseudostreamer Boundary Dynamics on Heliospheric Field and Wind

    Get PDF
    Interchange reconnection has been proposed as a mechanism for the generation of the slow solar wind, and a key contributor to determining its characteristic qualities. In this paper we study the implications of interchange reconnection for the structure of the plasma and field in the heliosphere. We use the Adaptively Refined Magnetohydrodynamic Solver to simulate the coronal magnetic evolution in a coronal topology containing both a pseudostreamer and helmet streamer. We begin with a geometry containing a low-latitude coronal hole that is separated from the main polar coronal hole by a pseudostreamer. We drive the system by imposing rotating flows at the solar surface within and around the low-latitude coronal hole, which leads to a corrugation (at low altitudes) of the separatrix surfaces that separate open from closed magnetic flux. Interchange reconnection is induced both at the null points and separators of the pseudostreamer, and at the global helmet streamer. We demonstrate that a preferential occurrence of interchange reconnection in the "lanes" between our driving cells leads to a filamentary pattern of newly opened flux in the heliosphere. These flux bundles connect to but extend far from the separatrix-web (S-Web) arcs at the source surface. We propose that the pattern of granular and supergranular flows on the photosphere should leave an observable imprint in the heliosphere

    Plumelets: Dynamic Filamentary Structures in Solar Coronal Plumes

    Get PDF
    Solar coronal plumes long seemed to possess a simple geometry supporting spatially coherent, stable outflow without significant fine structure. Recent high-resolution observations have challenged this picture by revealing numerous transient, small-scale, collimated outflows ("jetlets") at the base of plumes. The dynamic filamentary structure of solar plumes above these outflows, and its relationship with the overall plume structure, have remained largely unexplored. We analyzed the statistics of continuously observed fine structure inside a single representative bright plume within a mid-latitude coronal hole during 2016 July 2–3. By applying advanced edge-enhancement and spatiotemporal analysis techniques to extended series of high-resolution images from the Solar Dynamics Observatory's Atmospheric Imaging Assembly, we determined that the plume was composed of numerous time-evolving filamentary substructures, referred to as "plumelets" in this paper, that accounted for most of the plume emission. The number of simultaneously identifiable plumelets was positively correlated with plume brightness, peaked in the fully formed plume, and remained saturated thereafter. The plumelets had transverse widths of 10 Mm and intermittently supported upwardly propagating periodic disturbances with phase speeds of 190–260 km s−1 and longitudinal wavelengths of 55–65 Mm. The characteristic frequency (≈ 3.3 mHz) is commensurate with that of solar p-modes. Oscillations in neighboring plumelets are uncorrelated, indicating that the waves could be driven by p-mode flows at spatial scales smaller than the plumelet separation. Multiple independent sources of outflow within a single coronal plume should impart significant fine structure to the solar wind that may be detectable by Parker Solar Probe and Solar Orbiter

    The Imprint of Intermittent Interchange Reconnection on the Solar Wind

    Get PDF
    The solar wind is known to be highly structured in space and time. Observations from Parker Solar Probe have revealed an abundance of so-called magnetic switchbacks within the near-Sun solar wind. In this Letter, we use a high-resolution, adaptive-mesh, magnetohydrodynamics simulation to explore the disturbances launched into the solar wind by intermittent/bursty interchange reconnection and how they may be related to magnetic switchbacks. We find that repeated ejection of plasmoid flux ropes into the solar wind produces a curtain of propagating and interacting torsional Alfvénic waves. We demonstrate that this curtain forms when plasmoid flux ropes dynamically realign with the radial field as they are ejected from the current layer and that this is a robust effect of the 3D geometry of the interchange reconnection region. Simulated flythroughs of this curtain in the low corona reveal an Alfvénic patch that closely resembles observations of switchback patches, but with relatively small magnetic field deflections. Therefore, we suggest that switchbacks could be the solar wind imprint of intermittent interchange reconnection in the corona, provided an in situ process subsequently amplifies the disturbances to generate the large deflections or reversals of radial field that are typically observed. That is to say, our results indicate that a combination of low-coronal and inner-heliospheric mechanisms may be required to explain switchback observations

    Solar coronal jets:observations, theory, and modeling

    Get PDF
    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of “nominal” solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003

    Get PDF
    We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous H-alpha ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the center of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasiseparatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four H-alpha ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted

    How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    Full text link
    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last sixteen years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a 3-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present high-detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear structure). We find that at least 40% of the observed CMEs have clear flux rope structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue "Flux Rope Structure of CMEs
    corecore