388 research outputs found
A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure
In this paper, a novel infra-red (IR) sensitive Er3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er3+ to PVDF is shown to improve piezoelectric properties due to the formation of a self-polarized ferroelectric β-phase and the creation of an electret-like porous structure. In addition, we demonstrate that Er3+ acts to enhance heat transfer into the Er-PVDF film due to its excellent infrared absorbance, which, leads to rapid and large temperature fluctuations and improved pyroelectric energy transformation. We demonstrate the potential of this novel material for mechanical energy harvesting by creating a durable ferroelectret energy harvester/nanogenerator (FTNG). The high thermal stability of the β-phase enables the FTNG to harvest large temperature fluctuations (ΔT ~ 24 K). Moreover, the superior mechanosensitivity, SM ~ 3.4 VPa−1 of the FTNG enables the design of a wearable self-powered health-care monitoring system by human-machine integration. The combination of rare-earth ion, Er3+ with the ferroelectricity of PVDF provides a new and robust approach for delivering smart materials and structures for self-powered wireless technologies, sensors and Internet of Things (IoT) devices
Polarisation orientation effects and hydrostatic parameters in novel 2-2 composites basedon PMN-x PT single crystals
Cosmic microwave background anisotropies in multi-connected flat spaces
This article investigates the signature of the seventeen multi-connected flat
spaces in cosmic microwave background (CMB) maps. For each such space it
recalls a fundamental domain and a set of generating matrices, and then goes on
to find an orthonormal basis for the set of eigenmodes of the Laplace operator
on that space. The basis eigenmodes are expressed as linear combinations of
eigenmodes of the simply connected Euclidean space. A preceding work, which
provides a general method for implementing multi-connected topologies in
standard CMB codes, is then applied to simulate CMB maps and angular power
spectra for each space. Unlike in the 3-torus, the results in most
multi-connected flat spaces depend on the location of the observer. This effect
is discussed in detail. In particular, it is shown that the correlated circles
on a CMB map are generically not back-to-back, so that negative search of
back-to-back circles in the WMAP data does not exclude a vast majority of flat
or nearly flat topologies.Comment: 33 pages, 19 figures, 1 table. Submitted to PR
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
2-2 composites based on [011]-poled relaxor-ferroelectric single crystals:from the piezoelectric anisotropy to the hydrostatic response
Impact of stirring regime on piezocatalytic dye degradation using BaTiO3 nanoparticles
There is increasing demand to use readily accessible waste energy to drive environmentally friendly processes. Piezocatalysis, the process of converting mechanical energy such as vibration into a chemical process, is a breakthrough next generation approach to meet this challenge. However, these systems currently focus on using ultrasound to drive the chemical reaction and are therefore expensive to operate. We show that by using simple mechanical stirring and BaTiO3 particles we can remove Rhodamine B dye molecules from solution. After evaluating a range of stirring parameters, we demonstrate that there is an interplay between stirring speed, volume of liquid, catalyst structure and rate of dye removal. Our maximum degradation rate was 12.05 mg. g-1 catalyst after 1 hour of mechanical stirring at favourable conditions. This development provides a new insight into a low energy physical technique that can be used in environmental remediation processes
Sensitivity of bistable laminates to uncertainties in material properties, geometry and environmental conditions
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
Understanding the effect of saturated gases on catalytic performance of graphitic‐carbon nitride (g‐C<sub>3</sub>N<sub>4</sub>) for H<sub>2</sub>O<sub>2</sub> generation and dye degradation in the presence of ultrasound
This paper examines the effect of saturated gases on H2O2 generation and dye degradation using graphitic‐carbon nitride (g‐C3N4) as a piezoelectric catalyst. A detailed catalytic evaluation was carried out using a double‐bath sono‐reactor, where the performance of g‐C3N4 for H2O2 production and degradation of rhodamine B and indigo carmine dyes was evaluated for a range of catalyst dosage levels and saturated gases. Specific gases were selected to understand their role in the sonochemical production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and to elucidate the potential catalytic mechanism. The use of an Ar‐O2 gas mixture led to the highest yield for H2O2 production and dye degradation due to the positive effect of argon and oxygen in the generation of H2O2 and reactive oxygen species, respectively. The presence of nitrogen in both air and in an Ar‐air mixture increased H2O2 generation since reactive nitrogen species improved the conversion of •OH into H2O2. In contrast, air and Ar‐air negatively influenced the generation of ROS, which resulted in a low rate of dye degradation. This work provides new insights of the mechanisms of sonochemical and piezocatalytic processes in the use of graphitic‐carbon nitride in catalytic applications.This article is protected by copyright. All rights reserved
- …
