943 research outputs found

    D-Brane Dynamics and NS5 Rings

    Full text link
    We consider the classical motion of a probe D-brane moving in the background geometry of a ring of NS5 branes, assuming that the latter are non-dynamical. We analyse the solutions to the Dirac-Born-Infield (DBI) action governing the approximate dynamics of the system. In the near horizon (throat) approximation we find several exact solutions for the probe brane motion. These are compared to numerical solutions obtained in more general cases. One solution of particular interest is when the probe undergoes oscillatory motion through the centre of the ring (and perpendicular to it). By taking the ring radius sufficiently large, this solution should remain stable to any stringy corrections coming from open-strings stretching between the probe and the NS5-branes along the ring.Comment: 17 pages, Latex, 8 figures; References adde

    D-brane dynamics near compactified NS5-branes

    Full text link
    We examine the dynamics of a DpDp-brane in the background of kk coincident, parallel NSNS5-branes which have had one of their common transverse directions compactified. We find that for small energy, bound orbits can exist at sufficiently large distances where there will be no stringy effects. The orbits are dependent upon the energy density, angular momentum and electric field. The analysis breaks down at radial distances comparable with the compactification radius and we must resort to using a modified form of the harmonic function in this region.Comment: Latex, 20 pages, 6 figs, references adde

    Goldstone Bosons and Global Strings in a Warped Resolved Conifold

    Full text link
    A warped resolved conifold background of type IIB theory, constructed in hep-th/0701064, is dual to the supersymmetric SU(N)×SU(N)SU(N)\times SU(N) gauge theory with a vacuum expectation value (VEV) for one of the bifundamental chiral superfields. This VEV breaks both the superconformal invariance and the baryonic symmetry. The absolute value of the VEV controls the resolution parameter of the conifold. In this paper we study the phase of the VEV, which corresponds to the Goldstone boson of the broken symmetry. We explicitly construct the linearized perturbation of the 4-form R-R potential that contains the Goldstone boson. On general grounds, the theory should contain global strings which create a monodromy of the pseudoscalar Goldstone boson field. We identify these strings with the D3D3-branes wrapping the two-cycle at the tip of the warped resolved conifold.Comment: 15 pages, no figure

    M-flation: Inflation From Matrix Valued Scalar Fields

    Full text link
    We propose an inflationary scenario, M-flation, in which inflation is driven by three N×NN\times N hermitian matrices Φi,i=1,2,3\Phi_i, i=1,2,3. The inflation potential of our model, which is strongly motivated from string theory, is constructed from Φi\Phi_{i} and their commutators. We show that one can consistently restrict the classical dynamics to a sector in which the Φi\Phi_i are proportional to the N×NN\times N irreducible representations of SU(2). In this sector our model effectively behaves as an N-flation model with 3N23 N^2 number of fields and the effective inflaton field has a super-Planckian field value. Furthermore, the fine-tunings associated with unnaturally small couplings in the chaotic type inflationary scenarios are removed. Due to the matrix nature of the inflaton fields there are 3N213N^2-1 extra scalar fields in the dynamics. These have the observational effects such as production of iso-curvature perturbations on cosmic microwave background. Moreover, the existence of these extra scalars provides us with a natural preheating mechanism and exit from inflation. As the effective inflaton field can traverse super-Planckian distances in the field space, the model is capable of producing a considerable amount of gravity waves that can be probed by future CMB polarization experiments such as PLANCK, QUIET and CMBPOL.Comment: minor changes, the counting of the alpha and beta modes are corrected, references adde

    Fuzzy Sphere Dynamics and Non-Abelian DBI in Curved Backgrounds

    Full text link
    We consider the non-Abelian action for the dynamics of NDpN Dp'-branes in the background of MDpM Dp-branes, which parameterises a fuzzy sphere using the SU(2) algebra. We find that the curved background leads to collapsing solutions for the fuzzy sphere except when we have D0D0 branes in the D6D6 background, which is a realisation of the gravitational Myers effect. Furthermore we find the equations of motion in the Abelian and non-Abelian theories are identical in the large NN limit. By picking a specific ansatz we find that we can incorporate angular momentum into the action, although this imposes restriction upon the dimensionality of the background solutions. We also consider the case of non-Abelian non-BPS branes, and examine the resultant dynamics using world-volume symmetry transformations. We find that the fuzzy sphere always collapses but the solutions are sensitive to the combination of the two conserved charges and we can find expanding solutions with turning points. We go on to consider the coincident NSNS5-brane background, and again construct the non-Abelian theory for both BPS and non-BPS branes. In the latter case we must use symmetry arguments to find additional conserved charges on the world-volumes to solve the equations of motion. We find that in the Non-BPS case there is a turning solution for specific regions of the tachyon and radion fields. Finally we investigate the more general dynamics of fuzzy S2k\mathbb{S}^{2k} in the DpDp-brane background, and find collapsing solutions in all cases.Comment: 49 pages, 3 figures, Latex; Version to appear in JHE

    Geometrical Tachyon Kinks and NS5 Branes

    Full text link
    We further investigate the NSNS5 ring background using the tachyon map. Mapping the radion fields to the rolling tachyon helps to explain the motion of a probe DpDp-brane in this background. It turns out that the radion field becomes tachyonic when the brane is confined to one dimensional motion inside the ring. We find explicit solutions for the geometrical tachyon field that describe stable kink solutions which are similar to those of the open string tachyon. Interestingly in the case of the geometric tachyon, the dynamics is controlled by a cosine potential. In addition, we couple a constant electric field to the probe-brane, but find that the only stable kink solutions occur when there is zero electric field or a critical field value. We also investigate the behaviour of Non-BPS branes in this background, and find that the end state of any probe brane is that of tachyonic matter 'trapped' around the interior of the ring. We conclude by considering compactification of the ring solution in one of the transverse directions.Comment: Latex, 24 pages, 1 eps fig; clarifying comments added to Section 2; typos correcte

    String Necklaces and Primordial Black Holes from Type IIB Strings

    Full text link
    We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.Comment: 45 pages, 9 figures, LaTeX; published versio

    Non-Abelian (p,q) Strings in the Warped Deformed Conifold

    Get PDF
    We calculate the tension of (p,q)(p,q)-strings in the warped deformed conifold using the non-Abelian DBI action. In the large flux limit, we find exact agreement with the recent expression obtained by Firouzjahi, Leblond and Henry-Tye up to and including order 1/M21/M^2 terms if qq is also taken to be large. Furthermore using the finite qq prescription for the symmetrised trace operation we anticipate the most general expression for the tension valid for any (p,q)(p,q). We find that even in this instance, corrections to the tension scale as 1/M21/M^2 which is not consistent with simple Casimir scaling.Comment: 18 pages, Latex, 1 figure; Added a discussion of the case when the warp factor parameter b1b\neq 1 and typos correcte

    Electrified Fuzzy Spheres and Funnels in Curved Backgrounds

    Full text link
    We use the non-Abelian DBI action to study the dynamics of NN coincident DpDp-branes in an arbitrary curved background, with the presence of a homogenous world-volume electric field. The solutions are natural extensions of those without electric fields, and imply that the spheres will collapse toward zero size. We then go on to consider the D1D3D1-D3 intersection in a curved background and find various dualities and automorphisms of the general equations of motion. It is possible to map the dynamical equation of motion to the static one via Wick rotation, however the additional spatial dependence of the metric prevents this mapping from being invertible. Instead we find that a double Wick rotation leaves the static equation invariant. This is very different from the behaviour in Minkowski space. We go on to construct the most general static fuzzy funnel solutions for an arbitrary metric either by solving the static equations of motion, or by finding configurations which minimise the energy. As a consistency check we construct the Abelian D3D3-brane world-volume theory in the same generic background and find solutions consistent with energy minimisation. In the NSNS5-brane background we find time dependent solutions to the equations of motion, representing a time dependent fuzzy funnel. These solutions match those obtained from the DD-string picture to leading order suggesting that the action in the large NN limit does not need corrections. We conclude by generalising our solutions to higher dimensional fuzzy funnels.Comment: 38 pages, Latex; references adde

    Large Transverse Momenta in Statistical Models of High Energy Interactions

    Full text link
    The creation of particles with large transverse momenta in high energy hadronic collisions is a long standing problem. The transition from small- (soft) to hard- parton scattering `high-pt' events is rather smooth. In this paper we apply the non-extensive statistical framework to calculate transverse momentum distributions of long lived hadrons created at energies from low (sqrt(s)~10 GeV) to the highest energies available in collider experiments (sqrt(s)~2000 GeV). Satisfactory agreement with the experimental data is achieved. The systematic increase of the non-extensivity parameter with energy found can be understood as phenomenological evidence for the increased role of long range correlations in the hadronization process. Predictions concerning the rise of average transverse momenta up to the highest cosmic ray energies are also given and discussed.Comment: 20 pages, 10 figure
    corecore