231 research outputs found

    An Inflationary Model in String Theory

    Get PDF
    We construct a model of inflation in string theory after carefully taking into account moduli stabilization. The setting is a warped compactification of Type IIB string theory in the presence of D3 and anti-D3-branes. The inflaton is the position of a D3-brane in the internal space. By suitably adjusting fluxes and the location of symmetrically placed anti-D3-branes, we show that at a point of enhanced symmetry, the inflaton potential V can have a broad maximum, satisfying the condition V''/V << 1 in Planck units. On starting close to the top of this potential the slow-roll conditions can be met. Observational constraints impose significant restrictions. As a first pass we show that these can be satisfied and determine the important scales in the compactification to within an order of magnitude. One robust feature is that the scale of inflation is low, H = O(10^{10}) GeV. Removing the observational constraints makes it much easier to construct a slow-roll inflationary model. Generalizations and consequences including the possibility of eternal inflation are also discussed. A more careful study, including explicit constructions of the model in string theory, is left for the future.Comment: 27 pages, LaTeX, 1 eps figure. v2: references adde

    Gaugino Condensation and Nonperturbative Superpotentials in Flux Compactifications

    Get PDF
    There are two known sources of nonperturbative superpotentials for K\"ahler moduli in type IIB orientifolds, or F-theory compactifications on Calabi-Yau fourfolds, with flux: Euclidean brane instantons and low-energy dynamics in D7 brane gauge theories. The first class of effects, Euclidean D3 branes which lift in M-theory to M5 branes wrapping divisors of arithmetic genus 1 in the fourfold, is relatively well understood. The second class has been less explored. In this paper, we consider the explicit example of F-theory on K3×K3K3 \times K3 with flux. The fluxes lift the D7 brane matter fields, and stabilize stacks of D7 branes at loci of enhanced gauge symmetry. The resulting theories exhibit gaugino condensation, and generate a nonperturbative superpotential for K\"ahler moduli. We describe how the relevant geometries in general contain cycles of arithmetic genus χ1\chi \geq 1 (and how χ>1\chi > 1 divisors can contribute to the superpotential, in the presence of flux). This second class of effects is likely to be important in finding even larger classes of models where the KKLT mechanism of moduli stabilization can be realized. We also address various claims about the situation for IIB models with a single K\"ahler modulus.Comment: 24 pages, harvmac, no figures, references adde

    Flux Compactifications on Calabi-Yau Threefolds

    Get PDF
    The presence of RR and NS three-form fluxes in type IIB string compactification on a Calabi-Yau orientifold gives rise to a nontrivial superpotential W for the dilaton and complex structure moduli. This superpotential is computable in terms of the period integrals of the Calabi-Yau manifold. In this paper, we present explicit examples of both supersymmetric and nonsupersymmetric solutions to the resulting 4d N=1 supersymmetric no-scale supergravity, including some nonsupersymmetric solutions with relatively small values of W. Our examples arise on orientifolds of the hypersurfaces in WP1,1,1,1,44WP^{4}_{1,1,1,1,4} and WP1,1,2,2,64WP^{4}_{1,1,2,2,6}. They serve as explicit illustrations of several of the ingredients which have played a role in the recent proposals for constructing de Sitter vacua of string theory.Comment: 30 pages, harvmac big; refs and minor comments adde

    Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole. We explain how the stochastic gravity formalism can be a useful tool for that purpose within a low-energy effective field theory approach to quantum gravity. As an explicit example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a three-dimensional hypersurface. We emphasize the need for understanding and designing operational ways of probing quantum metric fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief discussion of their relevance included. To appear in the proceedings of the 10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Moduli Stabilization from Fluxes in a Simple IIB Orientifold

    Get PDF
    We study novel type IIB compactifications on the T^6/Z_2 orientifold. This geometry arises in the T-dual description of Type I theory on T^6, and one normally introduces 16 space-filling D3-branes to cancel the RR tadpoles. Here, we cancel the RR tadpoles either partially or fully by turning on three-form flux in the compact geometry. The resulting (super)potential for moduli is calculable. We demonstrate that one can find many examples of N=1 supersymmetric vacua with greatly reduced numbers of moduli in this system. A few examples with N>1 supersymmetry or complete supersymmetry breaking are also discussed.Comment: 49 pages, harvmac big; v2, corrected some typo

    de Sitter Vacua in String Theory

    Get PDF
    We outline the construction of metastable de Sitter vacua of type IIB string theory. Our starting point is highly warped IIB compactifications with nontrivial NS and RR three-form fluxes. By incorporating known corrections to the superpotential from Euclidean D-brane instantons or gaugino condensation, one can make models with all moduli fixed, yielding a supersymmetric AdS vacuum. Inclusion of a small number of anti-D3 branes in the resulting warped geometry allows one to uplift the AdS minimum and make it a metastable de Sitter ground state. The lifetime of our metastable de Sitter vacua is much greater than the cosmological timescale of 10^10 years. We also prove, under certain conditions, that the lifetime of dS space in string theory will always be shorter than the recurrence time.Comment: 12 pages, 2 figs, added comments on the thin wall approximation to tunnelin

    Azimuthal anisotropy at RHIC: the first and fourth harmonics

    Get PDF
    We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data tables are at http://www.star.bnl.gov/central/publications/pubDetail.php?id=3
    corecore