371 research outputs found
Testing Scalar-Tensor Gravity Using Space Gravitational-Wave Interferometers
We calculate the bounds which could be placed on scalar-tensor theories of
gravity of the Jordan, Fierz, Brans and Dicke type by measurements of
gravitational waveforms from neutron stars (NS) spiralling into massive black
holes (MBH) using LISA, the proposed space laser interferometric observatory.
Such observations may yield significantly more stringent bounds on the
Brans-Dicke coupling parameter \omega than are achievable from solar system or
binary pulsar measurements. For NS-MBH inspirals, dipole gravitational
radiation modifies the inspiral and generates an additional contribution to the
phase evolution of the emitted gravitational waveform. Bounds on \omega can
therefore be found by using the technique of matched filtering. We compute the
Fisher information matrix for a waveform accurate to second post-Newtonian
order, including the effect of dipole radiation, filtered using a currently
modeled noise curve for LISA, and determine the bounds on \omega for several
different NS-MBH canonical systems. For example, observations of a 1.4 solar
mass NS inspiralling to a 1000 solar mass MBH with a signal-to-noise ratio of
10 could yield a bound of \omega > 240,000, substantially greater than the
current experimental bound of \omega > 3000.Comment: 18 pages, 4 figures, 1 table; to be submitted to Phys. Rev.
A New Exponential Gravity
We propose a new exponential f(R) gravity model with f(R)=(R-\lambda
c)e^{\lambda(c/R)^n} and n>3, \lambda\geq 1, c>0 to explain late-time
acceleration of the universe. At the high curvature region, the model behaves
like the \LambdaCDM model. In the asymptotic future, it reaches a stable
de-Sitter spacetime. It is a cosmologically viable model and can evade the
local gravity constraints easily. This model share many features with other
f(R) dark energy models like Hu-Sawicki model and Exponential gravity model. In
it the dark energy equation of state is of an oscillating form and can cross
phantom divide line \omega_{de}=-1. In particular, in the parameter range 3<
n\leq 4, \lambda \sim 1, the model is most distinguishable from other models.
For instance, when n=4, \lambda=1, the dark energy equation of state will cross
-1 in the earlier future and has a stronger oscillating form than the other
models, the dark energy density in asymptotical future is smaller than the one
in the high curvature region. This new model can evade the local gravity tests
easily when n>3 and \lambda>1.Comment: 12 pages, 8 figure
Geodetic precession and frame dragging observed far from massive objects and close to a gyroscope
Total precession (geodetic precession and frame dragging) depends on the
velocity of each source of gravitation, which means that it depends on the
choice of the coordinate system. We consider the latter as an anomaly
specifically in the Gravity Probe B experiment, we investigated it and solved
this anomaly. Thus, we proved that if our present expression for the geodetic
precession is correct, then the frame dragging should be 25% less than its
predicted value.Comment: 11 page
An interacting scalar field and the recent cosmic acceleration
In this paper it is shown that the Brans - Dicke scalar field itself can
serve the purpose of providing an early deceleration and a late time
acceleration of the universe without any need of quintessence field if one
considers an interaction, i.e, transfer of energy between the dark matter and
the Brans - Dicke scalar field.Comment: 10 pages, 2 figure
Loop-Generated Bounds on Changes to the Graviton Dispersion Relation
We identify the effective theory appropriate to the propagation of massless
bulk fields in brane-world scenarios, to show that the dominant low-energy
effect of asymmetric warping in the bulk is to modify the dispersion relation
of the effective 4-dimensional modes. We show how such changes to the graviton
dispersion relation may be bounded through the effects they imply, through
loops, for the propagation of standard model particles. We compute these bounds
and show that they provide, in some cases, the strongest constraints on
nonstandard gravitational dispersions. The bounds obtained in this way are the
strongest for the fewest extra dimensions and when the extra-dimensional Planck
mass is the smallest. Although the best bounds come for warped 5-D scenarios,
for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop
can lead to a bound on the graviton speed which is comparable with other
constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte
Testing gravity to second post-Newtonian order: a field-theory approach
A new, field-theory-based framework for discussing and interpreting tests of
gravity, notably at the second post-Newtonian (2PN) level, is introduced.
Contrary to previous frameworks which attempted at parametrizing any
conceivable deviation from general relativity, we focus on the best motivated
class of models, in which gravity is mediated by a tensor field together with
one or several scalar fields. The 2PN approximation of these
"tensor-multi-scalar" theories is obtained thanks to a diagrammatic expansion
which allows us to compute the Lagrangian describing the motion of N bodies. In
contrast with previous studies which had to introduce many phenomenological
parameters, we find that the 2PN deviations from general relativity can be
fully described by only two new 2PN parameters, epsilon and zeta, beyond the
usual (Eddington) 1PN parameters beta and gamma. It follows from the basic
tenets of field theory, notably the absence of negative-energy excitations,
that (beta-1), epsilon and zeta (as well as any new parameter entering higher
post-Newtonian orders) must tend to zero with (gamma-1). It is also found that
epsilon and zeta do not enter the 2PN equations of motion of light. Therefore,
light-deflection or time-delay experiments cannot probe any theoretically
motivated 2PN deviation from general relativity, but they can give a clean
access to (gamma-1), which is of greatest significance as it measures the basic
coupling strength of matter to the scalar fields. Because of the importance of
self-gravity effects in neutron stars, binary-pulsar experiments are found to
constitute a unique testing ground for the 2PN structure of gravity. A
simplified analysis of four binary pulsars already leads to significant
constraints: |epsilon| < 7x10^-2, |zeta| < 6x10^-3.Comment: 63 pages, 11 figures.ps.tar.gz.uu, REVTeX 3.
Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling
We study gravitational radiation reaction in the equations of motion for
binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian
gravity, or O(v/c)^2 beyond the leading radiation reaction effects for
non-spinning bodies. We use expressions for the energy and angular momentum
flux at infinity that include spin-orbit corrections, together with an
assumption of energy and angular momentum balance, to derive equations of
motion that are valid for general orbits and for a class of coordinate gauges.
We show that the equations of motion are compatible with those derived earlier
by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio
Gravitational time advancement and its possible detection
The gravitational time advancement is a natural but a consequence of curve
space-time geometry. In the present work the expressions of gravitational time
advancement have been obtained for geodesic motions. The situation when the
distance of signal travel is small in comparison to the distance of closest
approach has also been considered. The possibility of experimental detection of
time advancement effect has been explored.Comment: 5 pages, 4 figures, a part of the work has been changed in the
revised versio
Generalized Brans-Dicke theories
In Brans-Dicke theory a non-linear self interaction of a scalar field allows
a possibility of realizing the late-time cosmic acceleration, while recovering
the General Relativistic behavior at early cosmological epochs. We extend this
to more general modified gravitational theories in which a de Sitter solution
for dark energy exists without using a field potential. We derive a condition
for the stability of the de Sitter point and study the background cosmological
dynamics of such theories. We also restrict the allowed region of model
parameters from the demand for the avoidance of ghosts and instabilities. A
peculiar evolution of the field propagation speed allows us to distinguish
those theories from the LCDM model.Comment: 14 pages, 4 figures, version to appear in JCA
TransverseDiff gravity is to scalar-tensor as unimodular gravity is to General Relativity
Transverse Diffeomorphism (TDiff) theories are well-motivated theories of
gravity from the quantum perspective, which are based upon a gauge symmetry
principle. The main contribution of this work is to firmly establish a
correspondence between TransverseDiff and the better-known scalar-tensor
gravity --- in its more general form ---, a relation which is completely
analogous to that between unimodular gravity and General Relativity. We then
comment on observational aspects of TDiff. In connection with this proof, we
derive a very general rule that determines under what conditions the procedure
of fixing a gauge symmetry can be equivalently applied before the variational
principle leading to the equations of motion, as opposed to the standard
procedure, which takes place afterwards; this rule applies to gauge-fixing
terms without derivatives.Comment: 10 pages; amsart style; v3: version as appeared in JCAP, redaction
improve
- …