1,746 research outputs found

    'A Towering Virtue of Necessity': Interdisciplinarity and the Rise of Computer Music at Vietnam-Era Stanford

    Get PDF
    Stanford, more than most American universities, transformed in the early Cold War into a research powerhouse tied to national security priorities. The budgetary and legitimacy crises that beset the military- industrial- academic research complex in the 1960s thus struck Stanford so deeply that many feared the university itself might not survive. We argue that these crises facilitated the rise of a new kind of interdisciplinarity at Stanford, as evidenced in particular by the founding of the university’s computer music center. Focusing on the “multivocal technology” of computer music, we investigate the relationships between Stanford’s broader institutional environment and the interactions among musicians, engineers, administrators, activists, and funders in order to explain the emergence of one of the most creative and profi table loci for Stanford’s contributions to industry and the arts

    On the Semi-Relative Condition for Closed (TOPOLOGICAL) Strings

    Full text link
    We provide a simple lagrangian interpretation of the meaning of the b0−b_0^- semi-relative condition in closed string theory. Namely, we show how the semi-relative condition is equivalent to the requirement that physical operators be cohomology classes of the BRS operators acting on the space of local fields {\it covariant} under world-sheet reparametrizations. States trivial in the absolute BRS cohomology but not in the semi-relative one are explicitly seen to correspond to BRS variations of operators which are not globally defined world-sheet tensors. We derive the covariant expressions for the observables of topological gravity. We use them to prove a formula that equates the expectation value of the gravitational descendant of ghost number 4 to the integral over the moduli space of the Weil-Peterson K\"ahler form.Comment: 10 pages, harvmac, CERN-TH-7084/93, GEF-TH-21/199

    ADAMTS9-regulated pericellular matrix dynamics governs focal adhesion-dependent smooth muscle differentiation

    Get PDF
    Focal adhesions anchor cells to extracellular matrix (ECM) and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC) focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM

    Classical Vs Quantum Probability in Sequential Measurements

    Full text link
    We demonstrate in this paper that the probabilities for sequential measurements have features very different from those of single-time measurements. First, they cannot be modelled by a classical stochastic process. Second, they are contextual, namely they depend strongly on the specific measurement scheme through which they are determined. We construct Positive-Operator-Valued measures (POVM) that provide such probabilities. For observables with continuous spectrum, the constructed POVMs depend strongly on the resolution of the measurement device, a conclusion that persists even if we consider a quantum mechanical measurement device or the presence of an environment. We then examine the same issues in alternative interpretations of quantum theory. We first show that multi-time probabilities cannot be naturally defined in terms of a frequency operator. We next prove that local hidden variable theories cannot reproduce the predictions of quantum theory for sequential measurements, even when the degrees of freedom of the measuring apparatus are taken into account. Bohmian mechanics, however, does not fall in this category. We finally examine an alternative proposal that sequential measurements can be modelled by a process that does not satisfy the Kolmogorov axioms of probability. This removes contextuality without introducing non-locality, but implies that the empirical probabilities cannot be always defined (the event frequencies do not converge). We argue that the predictions of this hypothesis are not ruled out by existing experimental results (examining in particular the "which way" experiments); they are, however, distinguishable in principle.Comment: 56 pages, latex; revised and restructured. Version to appear in Found. Phy

    Dynamic Image-Based Modelling of Kidney Branching Morphogenesis

    Full text link
    Kidney branching morphogenesis has been studied extensively, but the mechanism that defines the branch points is still elusive. Here we obtained a 2D movie of kidney branching morphogenesis in culture to test different models of branching morphogenesis with physiological growth dynamics. We carried out image segmentation and calculated the displacement fields between the frames. The models were subsequently solved on the 2D domain, that was extracted from the movie. We find that Turing patterns are sensitive to the initial conditions when solved on the epithelial shapes. A previously proposed diffusion-dependent geometry effect allowed us to reproduce the growth fields reasonably well, both for an inhibitor of branching that was produced in the epithelium, and for an inducer of branching that was produced in the mesenchyme. The latter could be represented by Glial-derived neurotrophic factor (GDNF), which is expressed in the mesenchyme and induces outgrowth of ureteric branches. Considering that the Turing model represents the interaction between the GDNF and its receptor RET very well and that the model reproduces the relevant expression patterns in developing wildtype and mutant kidneys, it is well possible that a combination of the Turing mechanism and the geometry effect control branching morphogenesis

    Einstein, incompleteness, and the epistemic view of quantum states

    Get PDF
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. Indeed, representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, the failure of locality can be established through an argument considerably more straightforward than Bell's theorem. The historical significance of this result becomes evident when one recognizes that the same reasoning is present in Einstein's preferred argument for incompleteness, which dates back to 1935. This fact suggests that Einstein was seeking not just any completion of quantum theory, but one wherein quantum states are solely representative of our knowledge. Our hypothesis is supported by an analysis of Einstein's attempts to clarify his views on quantum theory and the circumstance of his otherwise puzzling abandonment of an even simpler argument for incompleteness from 1927.Comment: 18 pages, 8 figures, 1 recipe for cupcakes; comments welcom

    PT-symmetric Solutions of Schrodinger Equation with position-dependent mass via Point Canonical Transformation

    Full text link
    PT-symmetric solutions of Schrodinger equation are obtained for the Scarf and generalized harmonic oscillator potentials with the position-dependent mass. A general point canonical transformation is applied by using a free parameter. Three different forms of mass distributions are used. A set of the energy eigenvalues of the bound states and corresponding wave functions for target potentials are obtained as a function of the free parameter.Comment: 13 page
    • 

    corecore