1 research outputs found

    Magnetic anomalies in the spin chain system, Sr3_3Cu1−x_{1-x}Znx_xIrO6_6

    Full text link
    We report the results of ac and dc magnetization (M) and heat-capacity (C) measurements on the solid solution, Sr3_3Cu1−x_{1-x}Znx_xIrO6_6. While the Zn end member is known to form in a rhombohedral pseudo one-dimensional K4_4CdCl6_6 structure with an antiferromagnetic ordering temperature of (TN_N =) 19 K, the Cu end member has been reported to form in a monoclinically distorted form with a Curie temperature of (TC_C =) 19 K. The magnetism of the Zn compound is found to be robust to synthetic conditions and is broadly consistent with the behavior known in the literature. However, we find a lower magnetic ordering temperature (To_o) for our Cu compound (~ 13 K), thereby suggesting that To_o is sensitive to synthetic conditions. The Cu sample appears to be in a spin-glass-like state at low temperatures, judged by a frequency dependence of ac magnetic susceptibility and a broadening of the C anomaly at the onset of magnetic ordering, in sharp contrast to earlier proposals. Small applications of magnetic field, however, drive this system to ferromagnetism as inferred from the M data. Small substitutions for Cu/Zn (x = 0.75 or 0.25) significantly depress magnetic ordering; in other words, To_o varies non-monotonically with x (To_o ~ 6, 3 and 4 K for x = 0.25, 0.5, and 0.67 respectively). The plot of inverse susceptibility versus temperature is non-linear in the paramagnetic state as if correlations within (or among) the magnetic chains continuously vary with temperature. The results establishComment: 7 pages, 7 figures, Revte
    corecore