225 research outputs found
The Possibilist Transactional Interpretation and Relativity
A recent ontological variant of Cramer's Transactional Interpretation, called
"Possibilist Transactional Interpretation" or PTI, is extended to the
relativistic domain. The present interpretation clarifies the concept of
'absorption,' which plays a crucial role in TI (and in PTI). In particular, in
the relativistic domain, coupling amplitudes between fields are interpreted as
amplitudes for the generation of confirmation waves (CW) by a potential
absorber in response to offer waves (OW), whereas in the nonrelativistic
context CW are taken as generated with certainty. It is pointed out that
solving the measurement problem requires venturing into the relativistic domain
in which emissions and absorptions take place; nonrelativistic quantum
mechanics only applies to quanta considered as 'already in existence' (i.e.,
'free quanta'), and therefore cannot fully account for the phenomenon of
measurement, in which quanta are tied to sources and sinks.Comment: Final version with some minor corrections as published in Foundations
of Physics. This paper has significant overlap with Chapter 6 of my book on
the Transactional Interpretation, forthcoming from Cambridge University
Press:
http://www.cambridge.org/us/knowledge/isbn/item6860644/?site_locale=en_US
(Additional preview material is available at rekastner.wordpress.com)
Comments welcom
Generation of LUMCi041-A-2: equipping a PAX3 reporter iPSC line with doxycycline inducible H2B-mTurquoise2 for live cell imaging
An induced pluripotent stem cell (iPSC) line, in which a H2B-fluorescent protein fusion is temporally expressed, is a valuable tool to track cells and study cell divisions and apoptosis. To this end we introduced a 3rd generation "all-in-one" doxycycline-inducible H2B-mTurquoise2 vector into the AAVS1 locus of PAX3-Venus iPSCs via CRISPR/Cas9. H2B-mTurquoise2 expression is absent but readily induced by doxycycline allowing quantification of cell divisions and imaging of living cells. Besides being a universal reporter in iPSC-based differentiation and toxicity assays, the generated pluripotent and genomically normal LUMCi041-A-2 line is particularly suited to study PAX3-positive stages of development.Therapeutic cell differentiatio
Field Production and Functional Evaluation of Chloroplast-Derived Interferon-α2b
Type I interferons (IFNs) inhibit viral replication and cell growth and enhance the immune response, and therefore have many clinical applications. IFN-α2b ranks third in world market use for a biopharmaceutical, behind only insulin and erythropoietin. The average annual cost of IFN-α2b for the treatment of hepatitis C infection is $26 000, and is therefore unavailable to the majority of patients in developing countries. Therefore, we expressed IFN-α2b in tobacco chloroplasts, and transgenic lines were grown in the field after obtaining United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) approval. Stable, site-specific integration of transgenes into chloroplast genomes and homoplasmy through several generations were confirmed. IFN-α2b levels reached up to 20% of total soluble protein, or 3 mg per gram of leaf (fresh weight). Transgenic IFN-α2b had similar in vitrobiological activity to commercially produced PEG-Intron™ when tested for its ability to protect cells against cytopathic viral replication in the vesicular stomatitis virus cytopathic effect (VSV CPE) assay and to inhibit early-stage human immunodeficiency virus (HIV) infection. The antitumour and immunomodulating properties of IFN-α2b were also seen in vivo . Chloroplast-derived IFN-α2b increased the expression of major histocompatibility complex class I (MHC I) on splenocytes and the total number of natural killer (NK) cells. Finally, IFN-α2b purified from chloroplast transgenic lines (cpIFN-α2b) protected mice from a highly metastatic tumour line. This demonstration of high levels of expression of IFN-α2b, transgene containment and biological activity akin to that of commercial preparations of IFN-α2b facilitated the first field production of a plant-derived human blood protein, a critical step towards human clinical trials and commercialization
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Strange Resonance Production in p+p and Au+Au Collisions at RHIC Energies
Resonance yields and spectra from elementary p+p and Au+Au collisions at
200 GeV from the STAR experiment at RHIC are presented
and discussed in terms of chemical and thermal freeze-out conditions. Thermal
models do not adequately describe the yields of the resonance production in
central Au+Au collisions. The approach to include elastic hadronic interactions
between chemical freeze-out and thermal freeze-out suggests a time of 5 fm/c.Comment: 4 pages, 7 figures, proceedings of the Quark Matter 2004, in Oakland,
California, to be published in Journal of Physics G: Nuclear and Particle
Physic
- …