51 research outputs found

    Microstructure and thermal stability of Fe, Ti and Ag implanted Yttria-stabilized zirconia

    Get PDF
    Yttria-stabilized zirconia (YSZ) was implanted with 15 keV Fe or Ti ions up to a dose of 8×1016 at cm−2. The resulting “dopant” concentrations exceeded the concentrations corresponding to the equilibrium solid solubility of Fe2O3 or TiO2 in YSZ. During oxidation in air at 400° C, the Fe and Ti concentration in the outermost surface layer increased even further until a surface layer was formed of mainly Fe2O3 and TiO2, as shown by XPS and ISS measurements. From the time dependence of the Fe and Ti depth profiles during anneal treatments, diffusion coefficients were calculated. From those values it was estimated that the maximum temperature at which the Fe- and Ti-implanted layers can be operated without changes in the dopant concentration profiles was 700 and 800° C, respectively. The high-dose implanted layer was completely amorphous even after annealing up to 1100° C, as shown by scanning transmission electron microscopy. Preliminary measurements on 50 keV Ag implanted YSZ indicate that in this case the amorphous layer recrystallizes into fine grained cubic YSZ at a temperature of about 1000° C. The average grain diameter was estimated at 20 nm, whereas the original grain size of YSZ before implantation was 400 nm. This result implies that the grain size in the surface of a ceramic material can be decreased by ion beam amorphisation and subsequent recrystallisation at elevated temperatures

    Metals and Ceramics Division materials science annual progress report for period ending June 30, 1977

    No full text
    Progress is reported for research programs in the metals and ceramics division of ORNL. In structure of materials, theoretical research, x-ray diffraction studies, studies of erosion of ceramics, preparation and synthesis of high temperature and special service materials, and studies of stabilities of microphases in high-temperature structural materials. Research into deformation and mechanical properties included physical metallurgy, and grain boundary segregation and embrittlement. Physical properties and transport phenomena were studied and included mechanisms of surface and solid state reactions, and properties of superconducting materials. The radiation effects program, directed at understanding the effects of composition and microstructure on the structure and properties of materials irradiated at elevated temperatures, is also described. (GHT

    Ion implantation damage in sapphire

    No full text

    Metals and Ceramics Division materials science annual progress report for period ending June 30, 1978

    No full text
    Topics covered include: structure of materials, theoretical research; x-ray diffraction research; fundamental ceramics studies; preparation and synthesis of high-temperature and special service materials; physical metallurgy; grain boundary segregation and fracture; mechanisms of surface and solid-state reactions; physical properties research; superconducting materials; radiation effects; facility and technique development; nuclear microanalysis; cooperative studies with universities and other research organizations; and fundamentals of welding and joining. (GHT

    Twinning in vanadium

    No full text
    corecore