75 research outputs found
Extended Analysis of Gravitomagnetic Fields in Rotating Superconductors and Superfluids
Applying the Ginzburg-Landau theory including frame dragging effects to the
case of a rotating superconductor, we were able to express the absolute value
of the gravitomagnetic field involved to explain the Cooper pair mass anomaly
previously reported by Tate. Although our analysis predicts large
gravitomagnetic fields originated by superconductive gyroscopes, those should
not affect the measurement of the Earth gravitomagnetic field by the Gravity
Probe-B satellite. However, the hypothesis might be well suited to explain a
mechanical momentum exchange phenomena reported for superfluid helium. As a
possible explanation for those abnormally large gravitomagnetic fields in
quantum materials, the reduced speed of light (and gravity) that was found in
the case of Bose-Einstein condensates is analysed
Gravitomagnetic Field of a Rotating Superconductor and of a Rotating Superfluid
The quantization of the extended canonical momentum in quantum materials
including the effects of gravitational drag is applied successively to the case
of a multiply connected rotating superconductor and superfluid. Experiments
carried out on rotating superconductors, based on the quantization of the
magnetic flux in rotating superconductors, lead to a disagreement with the
theoretical predictions derived from the quantization of a canonical momentum
without any gravitomagnetic term. To what extent can these discrepancies be
attributed to the additional gravitomagnetic term of the extended canonical
momentum? This is an open and important question. For the case of multiply
connected rotating neutral superfluids, gravitational drag effects derived from
rotating superconductor data appear to be hidden in the noise of present
experiments according to a first rough analysis
Moderate deviations for random field Curie-Weiss models
The random field Curie-Weiss model is derived from the classical Curie-Weiss
model by replacing the deterministic global magnetic field by random local
magnetic fields. This opens up a new and interestingly rich phase structure. In
this setting, we derive moderate deviations principles for the random total
magnetization , which is the partial sum of (dependent) spins. A typical
result is that under appropriate assumptions on the distribution of the local
external fields there exist a real number , a positive real number
, and a positive integer such that satisfies
a moderate deviations principle with speed and rate
function , where .Comment: 21 page
Induction and Amplification of Non-Newtonian Gravitational Fields
One obtains a Maxwell-like structure of gravitation by applying the
weak-field approximation to the well accepted theory of general relativity or
by extending Newton's laws to time-dependent systems. This splits gravity in
two parts, namely a gravitoelectric and gravitomagnetic (or cogravitational)
one. Due to the obtained similar structure between gravitation and
electromagnetism, one can express one field by the other one using a coupling
constant depending on the mass to charge ratio of the field source.
Calculations of induced gravitational fields using state-of-the-art fusion
plasmas reach only accelerator threshold values for laboratory testing.
Possible amplification mechanisms are mentioned in the literature and need to
be explored. The possibility of using the principle of equivalence in the weak
field approximation to induce non-Newtonian gravitational fields and the
influence of electric charge on the free fall of bodies are also investigated,
leading to some additional experimental recommendations
Motional effects of single trapped atomic/ionic qubit
We investigate theoretical decoherence effects of the motional degrees of
freedom of a single trapped atomic/ionic electronically coded qubit. For single
bit rotations from a resonant running wave laser field excitation, we found the
achievable fidelity to be determined by a single parameter characterized by the
motional states. Our quantitative results provide a useful realistic view for
current experimental efforts in quantum information and computing.Comment: 3 fig
Bone Morphogenetic Protein-6 (BMP-6) induces atresia in goat primordial follicles cultured in vitro
This study investigated the effects of bone morphogenetic protein 6 (BMP-6) on in vitro primordial follicle development in goats. Samples of goat ovarian cortex were cultured in vitro for 1 or 7 days in Minimum Essential Medium (control medium) supplemented with different concentrations of BMP-6. Follicle survival, activation and growth were evaluated through histology and transmission electron microscopy (TEM). After 7 days of culture, histological analysis demonstrated that BMP-6 enhanced the percentages of atretic primordial follicles when compared to fresh control (day 0). Nevertheless, BMP-6 increased follicular and oocyte diameter during both culture periods. As the culture period progressed from day 1 to day 7, a significant increase in follicle diameter was observed with 1 or 50ng/ml BMP-6. However, on the contrary to that observed with the control medium TEM revealed that follicles cultured for up to 7 days with 1 or 50ng/ml BMP-6 had evident signs of atresia. In conclusion, this study demonstrated that BMP-6 negatively affects the survival and ultrastructure of goat primordial follicles.O presente estudo investigou os efeitos da proteína morfogenética óssea-6 (BMP-6) no desenvolvimento in vitro de folículos primordiais caprinos. Amostras de córtex ovariano de cabras foram cultivados por 1 ou 7 dias em Meio Essencial Mínimo (meio controle) suplementado com diferentes concentrações de BMP-6. As taxas de sobrevivência, ativação e crescimento foram avaliadas por histologia clássica e microscopia eletrônica de transmissão (MET). Após 7 dias de cultivo, a análise histológica demonstrou que a BMP-6 aumentou o percentual de folículos primordiais degenerados no dia 7 quando comparados ao controle fresco (D0). Além disso, houve um aumento significativo do diâmetro folicular e oocitário em ambos os períodos de cultivo em todos os tratamentos na presença de BMP-6. Com a progressão do cultivo do dia 1 para o dia 7, nos tratamentos com 1 ou 50ng/ml de BMP-6, foi observado um aumento significativo no diâmetro folicular. Entretanto, contrário ao observado no meio controle, a MET revelou que os folículos cultivados nesses tratamentos apresentavam sinais evidentes de atresia. Em conclusão, esse estudo demonstrou que a BMP-6 afeta negativamente a sobrevivência e a ultra-estrutura de folículos primordiais caprinos
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
- …