14 research outputs found

    Grain refinement of magnesium alloys: a review of recent research, theoretical developments and their application

    Get PDF
    This paper builds on the ‘‘Grain Refinement of Mg Alloys’’ published in 2005 and reviews the grain refinement research onMg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy’s as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment

    A Mg-Al-Nd alloy produced via a powder metallurgical route

    Full text link
    A Mg-5 wt.%Al-2 wt.%Nd alloy has been prepared by a powder metallurgical route using a blend of two dissimilar alloy powders. The initial consolidation of the powders was achieved through a single equal channel angular extrusion pass at 150 °C. After heat treatment at temperatures between 420 °C and 530 °C, it was possible to produce a microstructure that consisted of a uniform distribution of Al3Nd and Al11Nd3 precipitates in a magnesium matrix. These precipitates displayed distinct orientation relationships with the matrix. The size and shape of the precipitates depended on the heat treatment temperature and time. © 2009 Elsevier B.V. All rights reserved

    The Corrosion Performance of Magnesium Alloy AM-SC1 in Automotive Engine Block Applications

    No full text
    The magnesium alloy AM-SC1 has been developed as a creep-resistant automotive engine block material. This paper outlines its corrosion performance under laboratory test conditions, considering corrosion on both the external and internal surfaces. This study found that AM-SC1 has a corrosion performance comparable to AZ91 when subjected to an aggressive salt-spray environment or in galvanic-coupling environments. This article further demonstrates that, with the appropriate selection of a commercially available engine coolant, the internal corrosion of AM-SC1 can be maintained at a tolerable level. In addition, internal corrosion resistance can be significantly improved by the addition of fluorides to the coolant solution. It is concluded that AM-SC1 can be successfully used in an engine environment provided that some simple corrosion-prevention strategies are adopted

    Kinetics of hot deformation in Mg/Nano-Al2O3 composite

    No full text
    10.1177/0021998309345345Journal of Composite Materials442181-194JCOM

    A uniaxial tensile stage with tracking capabilities for micro X-ray diffraction applications

    Full text link
    First results are presented for a uniaxial tensile stage designed to operate on a scanning micro X-ray diffraction synchrotron beamline. The new tensile stage allows experiments at typical loading cycles used in standard engineering stress–strain tests. Several key features have been implemented to support in situ loading experiments at the intragranular length scale. The physical size and weight of the load cell were minimized to maintain the correct working distance for the X-ray focusing optics and to avoid overloading the high-resolution raster scan translation stages. A high-magnification optical microscope and image correlation code were implemented to enable automated online tracking capabilities during macroscopic elongation of the sample. Preliminary in situ tensile loading experiments conducted on beamline 12.3.2 at the Advanced Light Source using a polycrystalline commercial-purity Ti test piece showed that the elastic–plastic response of individual grains could be measured with submicrometre spatial resolution. The experiments highlight the unique instrumentation capabilities of the tensile stage for direct measurement of deviatoric strain and observation of dislocation patterning on an intragranular length scale as a function of applied load

    Grain refinement of an extruded Mg alloy via na microalloying

    Full text link
    The effect of 0.3 wt pct Na on the microstructure of extruded alloy Mg-2Sn-1Zn is examined. We report that Na stabilizes the Mg2Sn phase, resulting in its precipitation during extrusion under conditions where a solid solution is otherwise expected. This effect appears to be thermodynamic in nature and is different from the kinetic enhancement of low- temperature aging reported by Mendis et al. [Phil. Mag. Letters, 86 (2006), 443]. The precipitates of the current study enable useful refinement of the grain size
    corecore