374 research outputs found

    Direct access valve replacement (DAVR) - are we entering a new era in cardiac surgery?

    Get PDF
    OBJECTIVE: This study validates the off-pump antegrade trans-ventricular route for ultrasound-guided direct access aortic valve replacement. Direct access aortic valve replacement using a transthoracic and valved stent-based approach offers numerous advantages over the remote access percutaneous approach and may one day provide an alternative treatment modality for aortic valve disease. METHODS: Valved stents were implanted off-pump in 17 pigs (72.10+/-8.4 kg) via the direct access transapical approach using a left-sided mini-thoracotomy and continuous ultrasonic and fluoroscopic guidance. Acute valved stent function was studied with intravascular and two-dimensional intracardiac ultrasound. The invasive valve gradient was assessed with pull-back pressure catheter. All valved stents were tested in vitro before insertion. Macroscopic analysis was performed at necropsy. RESULTS: In 11 of the 17 pigs, valved stents were delivered to the target site over the native aortic valve leaflets without interference of coronary blood flow and with good acute valve function. Three valved stents were deployed supra-annularly, two of those occluded the right coronary orifice and one the left coronary orifice, leading to fatal outcomes. Three valved stents dislodged into the left ventricle, one because of size-mismatch and two because of failure to unfold correctly. In 11 properly sized and deployed valved stents, two showed a moderate and one a severe paravalvular leak. CONCLUSIONS: Seventeen pigs underwent direct access valve replacement of the aortic valve with deployment of a valved stent into the native aorta. Eleven valves observed for an average 5-h period showed satisfactory, postimplantation valve function

    Neutrino Beams From Electron Capture at High Gamma

    Get PDF
    We investigate the potential of a flavor pure high gamma electron capture electron neutrino beam directed towards a large water cherenkov detector with 500 kt fiducial mass. The energy of the neutrinos is reconstructed by the position measurement within the detector and superb energy resolution capabilities could be achieved. We estimate the requirements for such a scenario to be competitive to a neutrino/anti-neutrino running at a neutrino factory with less accurate energy resolution. Although the requirements turn out to be extreme, in principle such a scenario could achieve as good abilities to resolve correlations and degeneracies in the search for sin^2(2 theta_13) and delta_CP as a standard neutrino factory experiment.Comment: 21 pages, 7 figures, revised version, to appear in JHEP, Fig.7 extended, minnor changes, results unchange

    Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    Get PDF
    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like Neutrino Factories and Beta Beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kton iron detector and a high energy Beta Beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ13\theta_{13} values greater than 4^\circ.Comment: 16 pages, 7 figures. Added a new section discussing systematic errors (sec 5.2); sec.5.1 and 4 have been extended. Version to appear in EPJ

    Orbital order in the low-dimensional quantum spin system TiOCl probed by ESR

    Full text link
    We present electron spin resonance data of Ti3+^{3+} (3d1d^1) ions in single crystals of the novel layered quantum spin magnet TiOCl. The analysis of the g tensor yields direct evidence that the d_{xy} orbital from the t_{2g} set is predominantly occupied and owing to the occurrence of orbital order a linear spin chain forms along the crystallographic b axis. This result corroborates recent theoretical LDA+U calculations of the band structure. The temperature dependence of the parameters of the resonance signal suggests a strong coupling between spin and lattice degrees of freedom and gives evidence for a transition to a nonmagnetic ground state at 67 K.Comment: revised version, accepted for publication in Phys. Rev. B, Rapid Com

    Optimum electrode configurations for fast ion separation in microfabricated surface ion traps

    Full text link
    For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    Asymmetric nuclear matter:the role of the isovector scalar channel

    Get PDF
    We try to single out some qualitative new effects of the coupling to the δ\delta-isovector-scalar meson introduced in a minimal way in a phenomenological hadronic field theory. Results for the equation of state (EOSEOS) and the phase diagram of asymmetric nuclear matter (ANMANM) are discussed. We stress the consistency of the δ\delta-coupling introduction in a relativistic approach. New contributions to the slope and curvature of the symmetry energy and the neutron-proton effective mass splitting appear particularly interesting. A more repulsive EOSEOS for neutron matter at high baryon densities is expected. Effects on new critical properties of warm ANMANM, mixing of mechanical and chemical instabilities and isospin distillation, are also presented. The δ\delta influence is mostly on the {\it isovectorlike} collective response. The results are largely analytical and this makes the physical meaning quite transparent. Implications for nuclear structure properties of drip-line nuclei and for reaction dynamics with Radioactive Beams are finally pointed out.Comment: 12 pages, 10 Postscript figure

    Study of Bs-> \phi l^+ l^-$ Decay in a Single Universal Extra Dimension

    Full text link
    Utilizing form factors calculated within the light-cone sum rules, we have evaluated the decay branching ratios of BsϕγB_s\to \phi\gamma and Bsϕ+B_s\to \phi \ell^+\ell^- in a single universal extra dimension model (UED), which is viewed as one of the alternative theories beyond the standard model (SM). For the decay Bsϕ+B_s \to \phi \ell^+\ell^-, the dilepton invariant mass spectra, the forward-backward asymmetry, and double lepton polarization are also calculated. For each case, we compared the obtained results with predictions of the SM. In lower values of the compactification factor 1/R, the only parameter in this model, we see the considerable discrepancy between the UED and SM models. However, when 1/R increases, the results of UED tend to diminish and at 1/R=1000GeV1/R = 1000 \mathrm{GeV}, two models have approximately the same predictions. Compared with data from CDF of Bsϕμ+μB_s \to \phi \mu^+ \mu^-, the 1/R tends to be larger than 350GeV350 \mathrm{GeV}. We also note that the zero crossing point of the forward-backward asymmetry is become smaller, which will be an important plat to prob the contribution from the extra dimension model. The results obtained in this work will be very useful in searching new physics beyond SM. Moreover, the order of magnitude for branching ratios shows a possibility to study these channels at the Large Hadron Collider (LHC), CDF and the future super-B factory.Comment: 13 pages, 16 figure
    corecore