65 research outputs found

    Oscillatory behavior of closed isotropic models in second order gravity theory

    Full text link
    Homogeneous and isotropic models are studied in the Jordan frame of the second order gravity theory. The late time evolution of the models is analysed with the methods of the dynamical systems. The normal form of the dynamical system has periodic solutions for a large set of initial conditions. This implies that an initially expanding closed isotropic universe may exhibit oscillatory behaviour.Comment: 16 pages, 3 figures. With some minor improvements. To appear in General Relativity and Gravitatio

    Illusions of general relativity in Brans-Dicke gravity

    Get PDF
    Contrary to common belief, the standard tenet of Brans-Dicke theory reducing to general relativity when omega tends to infinity is false if the trace of the matter energy-momentum tensor vanishes. The issue is clarified in a new approach using conformal transformations. The otherwise unaccountable limiting behavior of Brans-Dicke gravity is easily understood in terms of the conformal invariance of the theory when the sources of gravity have radiation-like properties. The rigorous computation of the asymptotic behavior of the Brans-Dicke scalar field is straightforward in this new approach.Comment: 16 pages, LaTeX, to appear in Physical Review

    The twin paradox and Mach's principle

    Full text link
    The problem of absolute motion in the context of the twin paradox is discussed. It is shown that the various versions of the clock paradox feature some aspects which Mach might have been appreciated. However, the ultimate cause of the behavior of the clocks must be attributed to the autonomous status of spacetime, thereby proving the relational program advocated by Mach as impracticable.Comment: Latex2e, 11 pages, 6 figures, 33 references, no tables. Accepted for publication in The European Physical Journal PLUS (EPJ PLUS

    General Relativity as an Attractor in Scalar-Tensor Stochastic Inflation

    Full text link
    Quantum fluctuations of scalar fields during inflation could determine the very large-scale structure of the universe. In the case of general scalar-tensor gravity theories these fluctuations lead to the diffusion of fundamental constants like the Planck mass and the effective Brans--Dicke parameter, ω\omega. In the particular case of Brans--Dicke gravity, where ω\omega is constant, this leads to runaway solutions with infinitely large values of the Planck mass. However, in a theory with variable ω\omega we find stationary probability distributions with a finite value of the Planck mass peaked at exponentially large values of ω\omega after inflation. We conclude that general relativity is an attractor during the quantum diffusion of the fields.Comment: LaTeX (with RevTex) 11 pages, 2 uuencoded figures appended, also available on WWW via http://star.maps.susx.ac.uk/index.htm

    STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY

    Get PDF
    In Brans-Dicke theory the Universe becomes divided after inflation into many exponentially large domains with different values of the effective gravitational constant. Such a process can be described by diffusion equations for the probability of finding a certain value of the inflaton and dilaton fields in a physical volume of the Universe. For a typical chaotic inflation potential, the solutions for the probability distribution never become stationary but grow forever towards larger values of the fields. We show here that a non-minimal conformal coupling of the inflaton to the curvature scalar, as well as radiative corrections to the effective potential, may provide a dynamical cutoff and generate stationary solutions. We also analyze the possibility of large nonperturbative jumps of the fluctuating inflaton scalar field, which was recently revealed in the context of the Einstein theory. We find that in the Brans--Dicke theory the amplitude of such jumps is strongly suppressed.Comment: 19 pages, LaTe

    G\"odel Incompleteness and the Black Hole Information Paradox

    Full text link
    Semiclassical reasoning suggests that the process by which an object collapses into a black hole and then evaporates by emitting Hawking radiation may destroy information, a problem often referred to as the black hole information paradox. Further, there seems to be no unique prediction of where the information about the collapsing body is localized. We propose that the latter aspect of the paradox may be a manifestation of an inconsistent self-reference in the semiclassical theory of black hole evolution. This suggests the inadequacy of the semiclassical approach or, at worst, that standard quantum mechanics and general relavity are fundamentally incompatible. One option for the resolution for the paradox in the localization is to identify the G\"odel-like incompleteness that corresponds to an imposition of consistency, and introduce possibly new physics that supplies this incompleteness. Another option is to modify the theory in such a way as to prohibit self-reference. We discuss various possible scenarios to implement these options, including eternally collapsing objects, black hole remnants, black hole final states, and simple variants of semiclassical quantum gravity.Comment: 14 pages, 2 figures; revised according to journal requirement

    Brans-Dicke Theory and primordial black holes in Early Matter-Dominated Era

    Full text link
    We show that primordial black holes can be formed in the matter-dominated era with gravity described by the Brans-Dicke theory. Considering an early matter-dominated era between inflation and reheating, we found that the primordial black holes formed during that era evaporate at a quicker than those of early radiation-dominated era. Thus, in comparison with latter case, less number of primordial black holes could exist today. Again the constraints on primordial black hole formation tend towards the larger value than their radiation-dominated era counterparts indicating a significant enhancement in the formation of primordial black holes during the matter-dominaed era.Comment: 9 page

    Cosmology With Non-Minimally Coupled K-Field

    Full text link
    We consider non-minimally coupled (with gravity) scalar field with non-canonical kinetic energy. The form of the kinetic term is of Dirac-Born-Infeld (DBI) form.We study the early evolution of the universe when it is sourced only by the k-field, as well as late time evolution when both the matter and k-field are present. For the k-field, we have considered constant potential as well as potential inspired from Boundary String Field Theory (B-SFT). We show that it is possible to have inflationary solution in early time as well as late time accelerating phase. The solutions also exhibit attractor property in a sense that it does not depend on the initial conditions for a certain values of the parameters.Comment: 10 pages, Revtex style, 14 eps figures, to appear in General Relativity and Gravitatio

    On Physical Equivalence between Nonlinear Gravity Theories

    Full text link
    We argue that in a nonlinear gravity theory, which according to well-known results is dynamically equivalent to a self-gravitating scalar field in General Relativity, the true physical variables are exactly those which describe the equivalent general-relativistic model (these variables are known as Einstein frame). Whenever such variables cannot be defined, there are strong indications that the original theory is unphysical. We explicitly show how to map, in the presence of matter, the Jordan frame to the Einstein one and backwards. We study energetics for asymptotically flat solutions. This is based on the second-order dynamics obtained, without changing the metric, by the use of a Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the ADM energy is positive for solutions close to flat space. The proof of this Positive Energy Theorem relies on the existence of the Einstein frame, since in the (Helmholtz--)Jordan frame the Dominant Energy Condition does not hold and the field variables are unrelated to the total energy of the system.Comment: 37 pp., TO-JLL-P 3/93 Dec 199

    Spectrum of density fluctuations in Brans-Dicke chaotic inflation

    Full text link
    In the context of Brans--Dicke theories, eternal inflation is described in such a way that the evolution of the inflaton field is determined by the value of the Planck mass in different regions of the universe. The Planck mass is given by the values of the Brans--Dicke field, which is coupled to the scalar curvature in the Lagrangian. We first calculate the joint probability distributions of the inflaton and Brans--Dicke fields, in order to compute the 3--volume ratios of homogeneous regions with arbitrary values of the fields still undergoing inflation with respect to thermalized regions. From these volume ratios one is able to extract information on the values of the fields measured by a typical observer for a given potential and, in particular, the typical value of the Planck mass at the end of inflation. In this paper, we investigate volume ratios using a regularization procedure suggested by Vilenkin, and the results are applied to powerlaw and double--well potentials. The spectrum of density fluctuations is calculated for generic potentials, and we discuss the likelihood of various scenarios that could tell us whether our region of the universe is typical or untypical depending on very general bounds on the evolution of the Brans--Dicke field.Comment: 26 pages, uuencoded compressed postscript file, two figures include
    corecore