6 research outputs found
Comprehensive structural characterization of MCM-41: From mesopores to particles
In the present work the meso- and macro-structural characteristics of the mesoporous adsorbent MCM-41 have been estimated with the help of various techniques. The structure is found to comprise four different length scales: that of the mesopores, the crystallites, the grains and of the particles. It was found that the surface area estimated by the use of small angle scattering techniques is higher, while that estimated by mercury porosimetry is much lower, than that obtained from gas adsorption methods. Based on the macropore characterization by mercury porosimetry, and the considerable macropore area determined, it is seen that the actual mesopore area of MCM-41 may be significantly lower than the BET area. TEM studies indicated that MCM-41 does not have an ideal mesopore structure; however, it may still be treated as a model mesoporous material for gas adsorption studies because of the large radius of curvature of the channels
Modeling of adsorption in finite cylindrical pores by means of density functional theory
Adsorption of argon at its boiling point infinite cylindrical pores is considered by means of the non-local density functional theory (NLDFT) with a reference to MCM-41 silica. The NLDFT was adjusted to amorphous solids, which allowed us to quantitatively describe argon adsorption isotherm on nonporous reference silica in the entire bulk pressure range. In contrast to the conventional NLDFT technique, application of the model to cylindrical pores does not show any layering before the phase transition in conformity with experimental data. The finite pore is modeled as a cylindrical cavity bounded from its mouth by an infinite flat surface perpendicular to the pore axis. The adsorption of argon in pores of 4 and 5 nm diameters is analyzed in canonical and grand canonical ensembles using a two-dimensional version of NLDFT, which accounts for the radial and longitudinal fluid density distributions. The simulation results did not show any unusual features associated with accounting for the outer surface and support the conclusions obtained from the classical analysis of capillary condensation and evaporation. That is, the spontaneous condensation occurs at the vapor-like spinodal point, which is the upper limit of mechanical stability of the liquid-like film wetting the pore wall, while the evaporation occurs via a mechanism of receding of the semispherical meniscus from the pore mouth and the complete evaporation of the core occurs at the equilibrium transition pressure. Visualization of the pore filling and empting in the form of contour lines is presented