416 research outputs found

    De endogene financiele structuur

    Get PDF
    De vrees dat verschillen in financiële structuur de transmissie van het Europese monetair beleid zullen bemoeilijken is overdreven. De financiële structuur in Europa zal door de komst van de euro harmoniseren

    Resummation Methods at Finite Temperature: The Tadpole Way

    Full text link
    We examine several resummation methods for computing higher order corrections to the finite temperature effective potential, in the context of a scalar ϕ4\phi^4 theory. We show by explicit calculation to four loops that dressing the propagator, not the vertex, of the one-loop tadpole correctly counts ``daisy'' and ``super-daisy'' diagrams.Comment: 18 pages, LaTeX, CALT-68-1858, HUTP-93-A011, EFI-93-2

    Dynamics near the critical point: the hot renormalization group in quantum field theory

    Get PDF
    The perturbative approach to the description of long wavelength excitations at high temperature breaks down near the critical point of a second order phase transition. We study the \emph{dynamics} of these excitations in a relativistic scalar field theory at and near the critical point via a renormalization group approach at high temperature and an ϵ\epsilon expansion in d=5ϵd=5-\epsilon space-time dimensions. The long wavelength physics is determined by a non-trivial fixed point of the renormalization group. At the critical point we find that the dispersion relation and width of quasiparticles of momentum pp is ωppz\omega_p \sim p^{z} and Γp(z1)ωp\Gamma_p \sim (z-1) \omega_p respectively, the group velocity of quasiparticles vgpz1v_g \sim p^{z-1} vanishes in the long wavelength limit at the critical point. Away from the critical point for TTcT\gtrsim T_c we find ωpξz[1+(pξ)2z]1/2\omega_p \sim \xi^{-z}[1+(p \xi)^{2z}]^{{1/2}} and Γp(z1)ωp(pξ)2z1+(pξ)2z\Gamma_p \sim (z-1) \omega_p \frac{(p \xi)^{2z}}{1+(p \xi)^{2z}} with ξ\xi the finite temperature correlation length ξTTcν \xi \propto |T-T_c|^{-\nu}. The new \emph{dynamical} exponent zz results from anisotropic renormalization in the spatial and time directions. For a theory with O(N) symmetry we find z=1+ϵN+2(N+8)2+O(ϵ2)z=1+ \epsilon \frac{N+2}{(N+8)^2}+\mathcal{O}(\epsilon^2). Critical slowing down, i.e, a vanishing width in the long-wavelength limit, and the validity of the quasiparticle picture emerge naturally from this analysis.Comment: Discussion on new dynamical universality class. To appear in Phys. Rev.

    Newborn screening for pompe disease? A qualitative study exploring professional views

    Get PDF
    Background: Developments in enzyme replacement therapy have kindled discussions on adding Pompe disease, characterized by progressive muscle weakness and wasting, to neonatal screening. Pompe disease does not fit traditional screening criteria as it is a broad-spectrum phenotype disorder that may occur in lethal form in early infancy or manifest in less severe forms from infancy to late adulthood. Current screening tests cannot differentiate between these forms. Normally, expanding screening is discussed among experts in advisory bodies. While advisory reports usually mention the procedures and outcome of deliberations, little is known of the importance attached to different arguments and the actual weighing processes involved. In this research we aim to explore the views of a wide range of relevant professionals to gain more insight into the process of weighing pros and cons of neonatal screening for Pompe disease, as an example of the dilemmas involved in screening for broad-spectrum phenotype disorders.Methods: We conducted 24 semi-structured interviews with medical, lab, insurance and screening professionals, and executive staff of patient organisations. They were asked about their first reaction to neonatal screening for Pompe disease, after which benefits and harms and requirements for screening were explored in more detail.Results: Advantages included health gain by timely intervention, avoiding a diagnostic quest, having a reproductive choice and gaining more knowledge about the natural course and treatment. Being prepared was mentioned as an advantage for the later manifesting cases. Disadvantages included treatment costs and uncertainties about its effect, the timing of treatment in later manifesting cases, the psychological burden for the patient-in-waiting and the family. Also the downsides of having prior knowledge as well as having to consider a reproductive option were mentioned as disadvantages.Conclusion: When weighing pros and cons, interviewees attach different importance to different arguments, based on personal and professional views. Professionals expect benefits from neonatal screening for Pompe disease, especially for early-onset cases. Some interviewees valued screening in later manifesting cases as well, while stressing the need for adequate support of pre-symptomatic patients and their families. Others considered the psychological burden and uncertainties regarding treatment as reasons not to screen

    Hyperons analogous to the \Lambda(1405)

    Full text link
    The low mass of the Λ(1405)\Lambda(1405) hyperon with jP=1/2j^P = 1/2^-, which is higher than the ground state Λ(1116)\Lambda(1116) mass by 290 MeV, is difficult to understand in quark models. We analyze the hyperon spectrum in the bound state approach of the Skyrme model that successfully describes both the Λ(1116)\Lambda(1116) and the Λ(1405)\Lambda(1405). This model predicts that several hyperon resonances of the same spin but with opposite parity form parity doublets that have a mass difference of around 300 MeV, which is indeed realized in the observed hyperon spectrum. Furthermore, the existence of the Ξ(1620)\Xi(1620) and the Ξ(1690)\Xi(1690) of jP=1/2j^P=1/2^- is predicted by this model. Comments on the Ω\Omega baryons and heavy quark baryons are made as well.Comment: 4 pages, talk presented at the Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), Aug. 22-26, 2011, Seoul, Kore

    An adaptive inelastic magnetic mirror for Bose-Einstein condensates

    Get PDF
    We report the reflection and focussing of a Bose-Einstein condensate by a new pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely high optical quality. The deviations from specularity are less than 0.5 mrad rms, making this the best atomic mirror demonstrated to date. We have also used the mirror to realize the analog of a beam-expander, producing an ultra-cold collimated fountain of matter wavesComment: 4 pages, 4 figure

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Long Range Magnetic Order and the Darwin Lagrangian

    Full text link
    We simulate a finite system of NN confined electrons with inclusion of the Darwin magnetic interaction in two- and three-dimensions. The lowest energy states are located using the steepest descent quenching adapted for velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For supercritical density the ground state has a non-zero kinetic energy. The critical density decreases with NN for exponential confinement but not for harmonic confinement. The lowest energy state also depends on the confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.Comment: 5 figure

    Computation of the winding number diffusion rate due to the cosmological sphaleron

    Get PDF
    A detailed quantitative analysis of the transition process mediated by a sphaleron type non-Abelian gauge field configuration in a static Einstein universe is carried out. By examining spectra of the fluctuation operators and applying the zeta function regularization scheme, a closed analytical expression for the transition rate at the one-loop level is derived. This is a unique example of an exact solution for a sphaleron model in 3+13+1 spacetime dimensions.Comment: Some style corrections suggested by the referee are introduced (mainly in Sec.II), one reference added. To appear in Phys.Rev.D 29 pages, LaTeX, 3 Postscript figures, uses epsf.st
    corecore