30 research outputs found

    Local log-law of the wall: numerical evidences and reasons

    Full text link
    Numerical studies performed with a primitive equation model on two-dimensional sinusoidal hills show that the local velocity profiles behave logarithmically to a very good approximation, from a distance from the surface of the order of the maximum hill height almost up to the top of the boundary layer. This behavior is well known for flows above homogeneous and flat topographies (``law-of-the-wall'') and, more recently, investigated with respect to the large-scale (``asymptotic'') averaged flows above complex topography. Furthermore, this new-found local generalized law-of-the-wall involves effective parameters showing a smooth dependence on the position along the underlying topography. This dependence is similar to the topography itself, while this property does not absolutely hold for the underlying flow, nearest to the hill surface.Comment: 9 pages, Latex, 2 figure

    Local law-of-the-wall in complex topography: a confirmation from wind tunnel experiments

    Get PDF
    It is well known that in a neutrally-stratified turbulent flow in a deep constant-stress layer above a flat surface, the variation of the mean velocity with respect to the distance from the surface obeys the logarithmic law (the so-called ``law-of-the-wall''). More recently, the same logarithmic law has been found also in the presence of non flat surfaces. It governs the dynamics of the mean velocity (i.e. all the smaller scales are averaged out) and involves renormalized effective parameters. Recent numerical simulations analyzed by the authors of the present Letter show that a more intrinsic logarithmic shape actually takes place also at smaller scales. Such a generalized law-of-the-wall involves effective parameters smoothly depending on the position along the underlying topography. Here, we present wind tunnel experimental evidence confirming and corroborating this new-found property. New results and their physical interpretation are also presented and discussed.Comment: 9 pages, (Latex), 4 figure

    Nickel on Lead, Magnetically Dead or Alive?

    Full text link
    Two atomic layers of Ni condensed onto Pb films behave, according to anomalous Hall effect measurements, as magnetic dead layers. However, the Ni lowers the superconducting T_{c} of the Pb film. This has lead to the conclusion that the Ni layers are still very weakly magnetic. In the present paper the electron dephasing due to the Ni has been measured by weak localization. The dephasing is smaller by a factor 100 than the pair-breaking. This proves that the T_{c}-reduction in the PbNi films is not due magnetic Ni moments

    Climatic data availability and modelling

    Full text link
    corecore