464 research outputs found

    Flavour structure of low-energy hadron pair photoproduction

    Full text link
    We consider the process γγH1Hˉ2\gamma\gamma\to H_1\bar H_2 where H1H_1 and H2H_2 are either mesons or baryons. The experimental findings for such quantities as the ppˉp\bar p and KSKSK_SK_S differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole--resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKSK_SK_S and the K+KK^+K^- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρωa\rho\omega\to a subprocess in the VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the ϕ\phi component, and is hence constrained. We give similar constraints to a number of other hadron pair production channels. After writing down the scaling and pole--resonance contributions accordingly, the direct summation of the two contributions is found to reproduce some salient features of the ppˉp\bar p and K+KK^+K^- data.Comment: 12 pages, 9 figures, revised version to be published in EPJ

    Factorizing the hard and soft spectator scattering contributions for the nucleon form factor F_1 at large Q^2

    Full text link
    We investigate the soft spectator scattering contribution for the FF F1F_{1}. We focus our attention on factorization of the hard-collinear scale QΛ\sim Q\Lambda corresponding to transition from SCET-I to SCET-II. We compute the leading order jet functions and find that the convolution integrals over the soft fractions are logarithmically divergent. This divergency is the consequence of the boost invariance and does not depend on the model of the soft correlation function describing the soft spectator quarks. Using as example a two-loop diagram we demonstrated that such a divergency corresponds to the overlap of the soft and collinear regions. As a result one obtains large rapidity logarithm which must be included in the correct factorization formalism. We conclude that a consistent description of the factorization for F1F_{1} implies the end-point collinear divergencies in the hard and soft spectator contributions, i.e. convolution integrals with respect to collinear fractions are not well-defined. Such scenario can only be realized when the twist-3 nucleon distribution amplitude has specific end-point behavior which differs from one expected from the evolution of the nucleon distribution amplitude. Such behavior leads to the violation of the collinear factorization for the hard spectator scattering contribution. We suggest that the soft spectator scattering and chiral symmetry breaking provide the mechanism responsible for the violation of collinear factorization in case of form factor F1F_{1}.Comment: 25 pages, 6 figures, text is improved, few typos corrected, one figure added, statement about end-point behavior of the nucleon DA is formulated more accuratel

    Forward Jets and Energy Flow in Hadronic Collisions

    Full text link
    We observe that at the Large Hadron Collider, using forward + central detectors, it becomes possible for the first time to carry out calorimetric measurements of the transverse energy flow due to "minijets" accompanying production of two jets separated by a large rapidity interval. We present parton-shower calculations of energy flow observables in a high-energy factorized Monte Carlo framework, designed to take into account QCD logarithmic corrections both in the large rapidity interval and in the hard transverse momentum. Considering events with a forward and a central jet, we examine the energy flow in the interjet region and in the region away from the jets. We discuss the role of these observables to analyze multiple parton collision effects.Comment: 9 pages, 5 figures. Version2: added results on azimuthal distributions and more discussion of energy flow definition using jet clusterin

    Search for single top quarks in the tau+jets channel using 4.8 fb1^{-1} of ppˉp\bar{p} collision data

    Get PDF
    We present the first direct search for single top quark production using tau leptons. The search is based on 4.8 fb1^{-1} of integrated luminosity collected in ppˉp\bar{p} collisions at s\sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We select events with a final state including an isolated tau lepton, missing transverse energy, two or three jets, one or two of them bb tagged. We use a multivariate technique to discriminate signal from background. The number of events observed in data in this final state is consistent with the signal plus background expectation. We set in the tau+jets channel an upper limit on the single top quark cross section of \TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected sensitivity for the observation of single top production when combining it with electron+jets and muon+jets channels already published by the D0 collaboration with 2.3 fb1^{-1} of data. We measure a combined cross section of \SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure

    Measurement of Z/gamma*+jet+X angular distributions in ppbar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.Comment: Published in Physics Letters B 682 (2010), pp. 370-380. 15 pages, 6 figure

    Search for the standard model Higgs boson in tau final states

    Get PDF
    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 inverse femtobarn of data collected with the D0 detector at the Fermilab Tevatron ppbar collider. We select two final states: tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.Comment: publication versio

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Search for W' bosons decaying to an electron and a neutrino with the D0 detector

    Get PDF
    This Letter describes the search for a new heavy charged gauge boson W' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of about 1 inverse femtobarn. Lacking any significant excess in the data in comparison with known processes, an upper limit is set on the production cross section times branching fraction, and a W' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits, and is the most stringent to date.Comment: submitted to Phys. Rev. Let
    corecore