874 research outputs found
Encoding databases satisfying a given set of dependencies
Consider a relation schema with a set of dependency constraints. A fundamental question is what is the minimum space where the possible instances of the schema can be "stored". We study the following model. Encode the instances by giving a function which maps the set of possible instances into the set of words of a given length over the binary alphabet in a decodable way. The problem is to find the minimum length needed. This minimum is called the information content of the database. We investigate several cases where the set of dependency constraints consist of relatively simple sets of functional or multivalued dependencies. We also consider the following natural extension. Is it possible to encode the instances such a way that small changes in the instance cause a small change in the code. © 2012 Springer-Verlag
Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling
Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.National Science Foundation (U.S.) (CHE-1111557
Interactions between proteins bound to biomembranes
We study a physical model for the interaction between general inclusions
bound to fluid membranes that possess finite tension, as well as the usual
bending rigidity. We are motivated by an interest in proteins bound to cell
membranes that apply forces to these membranes, due to either entropic or
direct chemical interactions. We find an exact analytic solution for the
repulsive interaction between two similar circularly symmetric inclusions. This
repulsion extends over length scales of order tens of nanometers, and contrasts
with the membrane-mediated contact attraction for similar inclusions on
tensionless membranes. For non circularly symmetric inclusions we study the
small, algebraically long-ranged, attractive contribution to the force that
arises. We discuss the relevance of our results to biological phenomena, such
as the budding of caveolae from cell membranes and the striations that are
observed on their coats.Comment: 22 pages, 2 figure
Spin pumping and magnetization dynamics in metallic multilayers
We study the magnetization dynamics in thin ferromagnetic films and small
ferromagnetic particles in contact with paramagnetic conductors. A moving
magnetization vector causes \textquotedblleft pumping\textquotedblright of
spins into adjacent nonmagnetic layers. This spin transfer affects the
magnetization dynamics similar to the Landau-Lifshitz-Gilbert phenomenology.
The additional Gilbert damping is significant for small ferromagnets, when the
nonmagnetic layers efficiently relax the injected spins, but the effect is
reduced when a spin accumulation build-up in the normal metal opposes the spin
pumping. The damping enhancement is governed by (and, in turn, can be used to
measure) the mixing conductance or spin-torque parameter of the
ferromagnet--normal-metal interface. Our theoretical findings are confirmed by
agreement with recent experiments in a variety of multilayer systems.Comment: 10 pages, 6 figure
Origin of Life
The evolution of life has been a big enigma despite rapid advancements in the
fields of biochemistry, astrobiology, and astrophysics in recent years. The
answer to this puzzle has been as mind-boggling as the riddle relating to
evolution of Universe itself. Despite the fact that panspermia has gained
considerable support as a viable explanation for origin of life on the Earth
and elsewhere in the Universe, the issue remains far from a tangible solution.
This paper examines the various prevailing hypotheses regarding origin of life
like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes
that delivery of life-bearing organic molecules by the comets in the early
epoch of the Earth alone possibly was not responsible for kick-starting the
process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio
Precise calculation of parity nonconservation in cesium and test of the standard model
We have calculated the 6s-7s parity nonconserving (PNC) E1 transition
amplitude, E_{PNC}, in cesium. We have used an improved all-order technique in
the calculation of the correlations and have included all significant
contributions to E_{PNC}. Our final value E_{PNC} = 0.904 (1 +/- 0.5 %) \times
10^{-11}iea_{B}(-Q_{W}/N) has half the uncertainty claimed in old calculations
used for the interpretation of Cs PNC experiments. The resulting nuclear weak
charge Q_{W} for Cs deviates by about 2 standard deviations from the value
predicted by the standard model.Comment: 24 pages, 8 figure
Reflection and the art of coaching: fostering high-performance in olympic ski cross
In preparation for the 2010 Vancouver Winter Olympic Games, the lead author engaged in systematic reflection in an attempt to implement coaching behaviours and create practice environments that promoted athlete development (psycho-social and physical performance). The research was carried out in relation to his work as head Ski Cross coach working with (primarily) three athletes in their quest for Olympic qualification and subsequent performance success in the Olympic Games. This project sought to examine coach-athlete interactions. Of particular interest were coach and athlete responses regarding the implementation of autonomy supportive coaching behaviours in a high context. Autonomy supportive coaching behaviours have previously been strongly associated with positive athlete psycho-social and performance outcomes, however, a paucity of research has examined its implementation in high-performance contexts. Through the use of participant ethnography, it was possible to gain considerable insights regarding athletes' perceptions of choice, implications of perceived athletic hierarchies, as well as cultural and experience-related influences on training and performance expectations
Effect of water table management and elevated CO 2 on radish productivity and on CH 4 and CO 2 fluxes from peatlands converted to agriculture
Anthropogenic activity is affecting the global climate through the release of greenhouse gases (GHGs) e.g. CO2 and CH4. About a third of anthropogenic GHGs are produced from agriculture, including livestock farming and horticulture. A large proportion of the UK's horticultural farming takes place on drained lowland peatlands, which are a source of significant amounts of CO2 into the atmosphere. This study set out to establish whether raising the water table from the currently used â 50 cm to â 30 cm could reduce GHGs emissions from agricultural peatlands, while simultaneously maintaining the current levels of horticultural productivity. A factorial design experiment used agricultural peat soil collected from the Norfolk Fens (among the largest of the UK's lowland peatlands under intensive cultivation) to assess the effects of water table levels, elevated CO2, and agricultural production on GHG fluxes and crop productivity of radish, one of the most economically important fenland crops. The results of this study show that a water table of â 30 cm can increase the productivity of the radish crop while also reducing soil CO2 emissions but without a resultant loss of CH4 to the atmosphere, under both ambient and elevated CO2 concentrations. Elevated CO2 increased dry shoot biomass, but not bulb biomass nor root biomass, suggesting no immediate advantage of future CO2 levels to horticultural farming on peat soils. Overall, increasing the water table could make an important contribution to global warming mitigation while not having a detrimental impact on crop yield
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- âŠ