1,264 research outputs found
Glassiness and constrained dynamics of a short-range non-disordered spin model
We study the low temperature dynamics of a two dimensional short-range spin
system with uniform ferromagnetic interactions, which displays glassiness at
low temperatures despite the absence of disorder or frustration. The model has
a dual description in terms of free defects subject to dynamical constraints,
and is an explicit realization of the ``hierarchically constrained dynamics''
scenario for glassy systems. We give a number of exact results for the statics
of the model, and study in detail the dynamical behaviour of one-time and
two-time quantities. We also consider the role played by the configurational
entropy, which can be computed exactly, in the relation between fluctuations
and response.Comment: 10 pages, 9 figures; minor changes, references adde
Attachment Avoidance and Amends-Making: A Case Advocating the Need for Attempting to Replicate Oneâs Own Work
Attachment avoidance is typically associated with negative behaviors in romantic relationships;
however, recent research has begun to uncover circumstances (e.g., being in high-quality relationships) that promote pro-relationship behaviors for more avoidantly attached individuals. One possible explanation for why more avoidant individuals behave negatively sometimes but positively at other times is that their impulses regarding relationship events vary depending on relationship context (e.g., relationship satisfaction level). An initial unregistered study found support for this hypothesis in an amends-making context. We then conducted three confirmatory high-powered preregistered replication attempts that failed to replicate our initial findings. In our discussion of these four studies we highlight the importance of attempting to replicate oneâs own work and sharing the results regardless of the outcome
Non-Commutativity and Unitarity Violation in Gauge Boson Scattering
We examine the unitarity properties of spontaneously broken non-commutative
gauge theories. We find that the symmetry breaking mechanism in the
non-commutative Standard Model of Chaichian et al. leads to an unavoidable
violation of tree-level unitarity in gauge boson scattering at high energies.
We then study a variety of simplified spontaneously broken non-commutative
theories and isolate the source of this unitarity violation. Given the group
theoretic restrictions endemic to non-commutative model building, we conclude
that it is difficult to build a non-commutative Standard Model under the
Weyl-Moyal approach that preserves unitarity.Comment: 31 page
A new photon recoil experiment: towards a determination of the fine structure constant
We report on progress towards a measurement of the fine structure constant to
an accuracy of or better by measuring the ratio of the
Planck constant to the mass of the cesium atom. Compared to similar
experiments, ours is improved in three significant ways: (i) simultaneous
conjugate interferometers, (ii) multi-photon Bragg diffraction between same
internal states, and (iii) an about 1000 fold reduction of laser phase noise to
-138 dBc/Hz. Combining that with a new method to simultaneously stabilize the
phases of four frequencies, we achieve 0.2 mrad effective phase noise at the
location of the atoms. In addition, we use active stabilization to suppress
systematic effects due to beam misalignment.Comment: 12 pages, 9 figure
Search for Kosterlitz-Thouless transition in a triangular Ising antiferromagnet with further-neighbour ferromagnetic interactions
We investigate an antiferromagnetic triangular Ising model with anisotropic
ferromagnetic interactions between next-nearest neighbours, originally proposed
by Kitatani and Oguchi (J. Phys. Soc. Japan {\bf 57}, 1344 (1988)). The phase
diagram as a function of temperature and the ratio between first- and second-
neighbour interaction strengths is thoroughly examined. We search for a
Kosterlitz-Thouless transition to a state with algebraic decay of correlations,
calculating the correlation lengths on strips of width up to 15 sites by
transfer-matrix methods. Phenomenological renormalization, conformal invariance
arguments, the Roomany-Wyld approximation and a direct analysis of the scaled
mass gaps are used. Our results provide limited evidence that a
Kosterlitz-Thouless phase is present. Alternative scenarios are discussed.Comment: 10 pages, RevTeX 3; 11 Postscript figures (uuencoded); to appear in
Phys. Rev. E (1995
Coherently Scattering Atoms from an Excited Bose-Einstein Condensate
We consider scattering atoms from a fully Bose-Einstein condensed gas. If we
take these atoms to be identical to those in the Bose-Einstein condensate, this
scattering process is to a large extent analogous to Andreev reflection from
the interface between a superconducting and a normal metal. We determine the
scattering wave function both in the absence and the presence of a vortex. Our
results show a qualitative difference between these two cases that can be
understood as due to an Aharonov-Bohm effect. It leads to the possibility to
experimentally detect and study vortices in this way.Comment: 5 pages of ReVTeX and 2 postscript figure
Kaon-Nucleon Scattering Amplitudes and Z-Enhancements from Quark Born Diagrams
We derive closed form kaon-nucleon scattering amplitudes using the ``quark
Born diagram" formalism, which describes the scattering as a single interaction
(here the OGE spin-spin term) followed by quark line rearrangement. The low
energy I=0 and I=1 S-wave KN phase shifts are in reasonably good agreement with
experiment given conventional quark model parameters. For Gev
however the I=1 elastic phase shift is larger than predicted by Gaussian
wavefunctions, and we suggest possible reasons for this discrepancy. Equivalent
low energy KN potentials for S-wave scattering are also derived. Finally we
consider OGE forces in the related channels K, KN and K,
and determine which have attractive interactions and might therefore exhibit
strong threshold enhancements or ``Z-molecule" meson-baryon bound states.
We find that the minimum-spin, minimum-isospin channels and two additional
K channels are most conducive to the formation of bound states.
Related interesting topics for future experimental and theoretical studies of
KN interactions are also discussed.Comment: 34 pages, figures available from the authors, revte
Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation
We propose a theory which deals with the structure and interactions of volume
elements in liquid helium II. The approach consists of two nested models linked
via parametric space. The short-wavelength part describes the interior
structure of the fluid element using a non-perturbative approach based on the
logarithmic wave equation; it suggests the Gaussian-like behaviour of the
element's interior density and interparticle interaction potential. The
long-wavelength part is the quantum many-body theory of such elements which
deals with their dynamics and interactions. Our approach leads to a unified
description of the phonon, maxon and roton excitations, and has noteworthy
agreement with experiment: with one essential parameter to fit we reproduce at
high accuracy not only the roton minimum but also the neighboring local maximum
as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure
- âŠ