1,063 research outputs found
Formula for success: Multilevel modelling of Formula One Driver and Constructor performance, 1950-2014
This paper uses random-coefficient models and (a) finds rankings of who are the best formula 1 (F1) drivers of all time, conditional on team performance; (b) quantifies how much teams and drivers matter; and (c) quantifies how team and driver effects vary over time and under different racing conditions. The points scored by drivers in a race (standardised across seasons and Normalised) is used as the response variable in a cross-classified multilevel model that partitions variance into team, team-year and driver levels. These effects are then allowed to vary by year, track type and weather conditions using complex variance functions. Juan Manuel Fangio is found to be the greatest driver of all time. Team effects are shown to be more important than driver effects (and increasingly so over time), although their importance may be reduced in wet weather and on street tracks. A sensitivity analysis was undertaken with various forms of the dependent variable; this did not lead to substantively different conclusions. We argue that the approach can be applied more widely across the social sciences, to examine individual and team performance under changing conditions
The mixed problem in L^p for some two-dimensional Lipschitz domains
We consider the mixed problem for the Laplace operator in a class of
Lipschitz graph domains in two dimensions with Lipschitz constant at most 1.
The boundary of the domain is decomposed into two disjoint sets D and N. We
suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary
and the Neumann data is in L^p(N). We find conditions on the domain and the
sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we
may find a unique solution to the mixed problem and the gradient of the
solution lies in L^p
Recommended from our members
Improvements in the CHERS system for DT experiments on TFTR
Improvements in the charge exchange recombination spectroscopy (CHERS) system have resulted in accurate measurements of T{sub i} and V{sub {phi}} profiles during DT experiments. These include moving the spectrometer detector array and electronics farther away from the tokamak to a low neutron flux location. This relocation has also improved access to all components of the system. Also, a nonplasma-viewing calibration fiber system was added to monitor the change in fiber transmission due to the high flux DT neutrons. Narrowband filtered light transmitted through the calibration fiber is now used as a reference for the VO measurement. At the highest neutron flux of {approximately} 2.5 {times} 10{sup 18} neutrons/see (fusion power {approximately} 6.2 MW) a modest 5% decrease in fiber transmission was observed. Corrections for transmission loss are made and T{sub i} (r,t) and absolute V{sub phi} (r,t) profiles are automatically calculated within four minutes of every shot
Recommended from our members
Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment
The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s
A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter
We have demonstrated a high-flux source of polarization-entangled photons
using a type-II phase-matched periodically-poled KTP parametric downconverter
in a collinearly propagating configuration. We have observed quantum
interference between the single-beam downconverted photons with a visibility of
99% and a measured coincidence flux of 300/s/mW of pump. The
Clauser-Horne-Shimony-Holt version of Bell's inequality was violated with a
value of 2.711 +/- 0.017.Comment: 7 pages submitted to Physical Review
Remarks on the forces generated by two-neutrino exchange
A brief up-to-date review of the long range forces generated by two neutrino
exchange is presented. The potential due to exchange of a massive
neutrino-antineutrino pair between particles carrying weak charge might be
larger than expected if the neutrinos have not only masses but also magnetic
moments close to the present experimental bounds. It still remains too small to
be observable.Comment: 10 pages, 3 figures. One figure added. Accepted for publication in
EPJ
How spiking neurons give rise to a temporal-feature map
A temporal-feature map is a topographic neuronal representation of temporal attributes of phenomena or objects that occur in the outside world. We explain the evolution of such maps by means of a spike-based Hebbian learning rule in conjunction with a presynaptically unspecific contribution in that, if a synapse changes, then all other synapses connected to the same axon change by a small fraction as well. The learning equation is solved for the case of an array of Poisson neurons. We discuss the evolution of a temporal-feature map and the synchronization of the single cells’ synaptic structures, in dependence upon the strength of presynaptic unspecific learning. We also give an upper bound for the magnitude of the presynaptic interaction by estimating its impact on the noise level of synaptic growth. Finally, we compare the results with those obtained from a learning equation for nonlinear neurons and show that synaptic structure formation may profit
from the nonlinearity
Do solar neutrinos decay?
Despite the fact that the solar neutrino flux is now well-understood in the
context of matter-affected neutrino mixing, we find that it is not yet possible
to set a strong and model-independent bound on solar neutrino decays. If
neutrinos decay into truly invisible particles, the Earth-Sun baseline defines
a lifetime limit of \tau/m \agt 10^{-4} s/eV. However, there are many
possibilities which must be excluded before such a bound can be established.
There is an obvious degeneracy between the neutrino lifetime and the mixing
parameters. More generally, one must also allow the possibility of active
daughter neutrinos and/or antineutrinos, which may partially conceal the
characteristic features of decay. Many of the most exotic possibilities that
presently complicate the extraction of a decay bound will be removed if the
KamLAND reactor antineutrino experiment confirms the large-mixing angle
solution to the solar neutrino problem and measures the mixing parameters
precisely. Better experimental and theoretical constraints on the B
neutrino flux will also play a key role, as will tighter bounds on absolute
neutrino masses. Though the lifetime limit set by the solar flux is weak, it is
still the strongest direct limit on non-radiative neutrino decay. Even so,
there is no guarantee (by about eight orders of magnitude) that neutrinos from
astrophysical sources such as a Galactic supernova or distant Active Galactic
Nuclei will not decay.Comment: Very minor corrections, corresponds to published versio
Banking from Leeds, not London: regional strategy and structure at the Yorkshire Bank, 1859–1952
Industrial philanthropist Edward Akroyd created the Yorkshire Penny Savings Bank in 1859. Despite competition from the Post Office Savings Bank after 1861 and a serious reserve problem in 1911, it sustained his overall strategy to become a successful regional bank. Using archival and contemporary sources to build on recent scholarship illustrating how savings banks were integrated into local economies and the complementary roles of philanthropy and paternalism, we analyse an English regional bank's strategy, including an assessment of strategic innovation, ownership changes and management structure. This will demonstrate that the founder's vision continued, even though the 1911 crisis radically altered both strategy and structure
Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot
We introduce a new set of generalized Fokker-Planck equations that conserve
energy and mass and increase a generalized entropy until a maximum entropy
state is reached. The concept of generalized entropies is rigorously justified
for continuous Hamiltonian systems undergoing violent relaxation. Tsallis
entropies are just a special case of this generalized thermodynamics.
Application of these results to stellar dynamics, vortex dynamics and Jupiter's
great red spot are proposed. Our prime result is a novel relaxation equation
that should offer an easily implementable parametrization of geophysical
turbulence. This relaxation equation depends on a single key parameter related
to the skewness of the fine-grained vorticity distribution. Usual
parametrizations (including a single turbulent viscosity) correspond to the
infinite temperature limit of our model. They forget a fundamental systematic
drift that acts against diffusion as in Brownian theory. Our generalized
Fokker-Planck equations may have applications in other fields of physics such
as chemotaxis for bacterial populations. We propose the idea of a
classification of generalized entropies in classes of equivalence and provide
an aesthetic connexion between topics (vortices, stars, bacteries,...) which
were previously disconnected.Comment: Submitted to Phys. Rev.
- …