6 research outputs found

    Anterior-to-posterior wave of buccal expansion in suction feeding fishes is critical for optimizing fluid flow velocity profile

    No full text
    In fishes that employ suction feeding, coordinating the timing of peak flow velocity with mouth opening is likely to be an important feature of prey capture success because this will allow the highest forces to be exerted on prey items when the jaws are fully extended and the flow field is at its largest. Although it has long been known that kinematics of buccal expansion in feeding fishes are characterized by an anterior-to-posterior wave of expansion, this pattern has not been incorporated in most previous computational models of suction feeding. As a consequence, these models have failed to correctly predict the timing of peak flow velocity, which according to the currently available empirical data should occur around the time of peak gape. In this study, we use a simple fluid dynamic model to demonstrate that the inclusion of an anterior-to-posterior wave of buccal expansion can correctly reproduce the empirically determined flow velocity profile, although only under very constrained conditions, whereas models that do not allow this wave of expansion inevitably predict peak velocity earlier in the strike, when the gape is less than half of its maximum. The conditions that are required to produce a realistic velocity profile are as follows: (i) a relatively long time lag between mouth opening and expansion of the more posterior parts of the mouth, (ii) a short anterior portion of the mouth relative to more posterior sections, and (iii) a pattern of movement that begins slowly and then rapidly accelerates. Greater maximum velocities were generated in simulations without the anterior-to-posterior wave of expansion, suggesting a trade-off between maximizing fluid speed and coordination of peak fluid speed with peak gape

    Relative importance of growth and behaviour to elasmobranch suction-feeding performance over early ontogeny

    No full text
    Development of the ability to capture prey is crucial to predator survival. Trends in food-capture performance over early ontogeny were quantified for leopard sharks Triakis semifasciata and whitespotted bamboosharks Chiloscyllium plagiosum by measuring suction pressure and flow in front of the mouth during feeding. At any size, C. plagiosum produce greater subambient pressure and ingest more rounded water parcels. Maximum subambient pressure scaled with negative allometry in T. semifasciata and was accompanied by an increase in the time to reach maximum gape. Despite a similar trend in buccal expansion timing, maximum pressure in C. plagiosum scaled with isometry and was accompanied by an earlier onset of hyoid depression and a positive allometric increase in buccal reserve volume. Growth was the primary factor responsible for developmental trends in both species, with size-independent behavioural changes contributing little to overall performance variability. Ontogenetic dietary shifts are predicted for both species as a consequence of size-dependent changes in performance. Chiloscyllium plagiosum becomes anatomically and behaviourally canalized towards suction feeding, limiting the effective range of prey capture and possibly necessitating stalking. Triakis semifasciata, by contrast, retains the flexibility to employ both ram and suction and therefore captures more elusive prey with age

    Advances in the Study of Feeding Behaviors, Mechanisms, and Mechanics of Sharks

    No full text

    Tactile reception and behavior of fish

    No full text
    corecore