1,431 research outputs found
A dynamical, confining model and hot quark stars
We explore the consequences of an equation of state (EOS) obtained in a
confining Dyson-Schwinger equation model of QCD for the structure and stability
of nonstrange quark stars at finite-T, and compare the results with those
obtained using a bag-model EOS. Both models support a temperature profile that
varies over the star's volume and the consequences of this are model
independent. However, in our model the analogue of the bag pressure is
(T,mu)-dependent, which is not the case in the bag model. This is a significant
qualitative difference and comparing the results effects a primary goal of
elucidating the sensitivity of quark star properties to the form of the EOS.Comment: 13 pages, 5 figures, epsfig.sty, elsart.sty. Shortened version to
appear in Phys. Lett. B, qualitatively unmodifie
Deconfinement at finite chemical potential
In a confining, renormalisable, Dyson-Schwinger equation model of two-flavour
QCD we explore the chemical-potential dependence of the dressed-quark
propagator, which provides a means of determining the behaviour of the chiral
and deconfinement order parameters, and low-energy pion observables. We find
coincident, first order deconfinement and chiral symmetry restoration
transitions at \mu_c = 375 MeV. f_\pi is insensitive to \mu until \mu \approx
\mu_0 = 0.7 mu_c when it begins to increase rapidly. m_\pi is weakly dependent
on \mu, decreasing slowly with \mu and reaching a minimum 6% less than its
\mu=0 value at \mu=\mu_0. In a two-flavour free-quark gas at \mu=\mu_c the
baryon number density would be approximately 3 \rho_0, where \rho_0=0.16
fm^{-3}; while in such a gas at \mu_0 the density is \rho_0.Comment: 11 pages, 3 figures, epsfig.sty, elsart.st
Nucleon form factors and a nonpointlike diquark
Nucleon form factors are calculated on q^2 in [0,3] GeV^2 using an Ansatz for
the nucleon's Fadde'ev amplitude motivated by quark-diquark solutions of the
relativistic Fadde'ev equation. Only the scalar diquark is retained, and it and
the quark are confined. A good description of the data requires a nonpointlike
diquark correlation with an electromagnetic radius of 0.8 r_pi. The composite,
nonpointlike nature of the diquark is crucial. It provides for diquark-breakup
terms that are of greater importance than the diquark photon absorption
contribution.Comment: 5 pages, REVTEX, epsfig, 3 figure
Quantifying fenbendazole and its metabolites in self-medicating wild red grouse Lagopus lagopus scoticus using an HPLC–MS–MS approach
On red grouse estates in the UK the nematode parasite Trichostrongylus tenuis is often controlled by application of grit medicated with the anthelmintic fenbendazole (FBZ). To date, assessment of the efficacy has been inhibited by the inability to quantify uptake of FBZ by the birds. We have developed a simple and sensitive HPLC–MS–MS method for detecting and quantifying FBZ and its metabolites from a 300 mg sample of red grouse liver. This method could be used to improve the efficacy of medicated grit treatment by allowing the identification of conditions and application methods that optimize the uptake of FBZ. With the necessary modifications, our method will also be applicable to other wildlife species where self-medication is used for parasite control
K -> pi pi and a light scalar meson
We explore the Delta-I= 1/2 rule and epsilon'/epsilon in K -> pi pi
transitions using a Dyson-Schwinger equation model. Exploiting the feature that
QCD penguin operators direct K^0_S transitions through 0^{++} intermediate
states, we find an explanation of the enhancement of I=0 K -> pi pi transitions
in the contribution of a light sigma-meson. This mechanism also affects
epsilon'/epsilon.Comment: 7 pages, REVTE
Valence-quark distributions in the pion
We calculate the pion's valence-quark momentum-fraction probability
distribution using a Dyson-Schwinger equation model. Valence-quarks with an
active mass of 0.30 GeV carry 71% of the pion's momentum at a resolving scale
q_0=0.54 GeV = 1/(0.37 fm). The shape of the calculated distribution is
characteristic of a strongly bound system and, evolved from q_0 to q=2 GeV, it
yields first, second and third moments in agreement with lattice and
phenomenological estimates, and valence-quarks carrying 49% of the pion's
momentum. However, pointwise there is a discrepancy between our calculated
distribution and that hitherto inferred from parametrisations of extant
pion-nucleon Drell-Yan data.Comment: 8 pages, 3 figures, REVTEX, aps.sty, epsfig.sty, minor corrections,
version to appear in PR
Concerning the quark condensate
A continuum expression for the trace of the massive dressed-quark propagator
is used to explicate a connection between the infrared limit of the QCD Dirac
operator's spectrum and the quark condensate appearing in the operator product
expansion, and the connection is verified via comparison with a lattice-QCD
simulation. The pseudoscalar vacuum polarisation provides a good approximation
to the condensate over a larger range of current-quark masses.Comment: 7 pages, LaTeX2e, revtex
Diquarks: condensation without bound states
We employ a bispinor gap equation to study superfluidity at nonzero chemical
potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory,
QC2D, is an excellent exemplar: the order of truncation of the quark-quark
scattering kernel: K, has no qualitative impact, which allows a straightforward
elucidation of the effects of mu when the coupling is strong. In rainbow-ladder
truncation, diquark bound states appear in the spectrum of the three-colour
theory, a defect that is eliminated by an improvement of K. The corrected gap
equation describes a superfluid phase that is semi-quantitatively similar to
that obtained using the rainbow truncation. A model study suggests that the
width of the superfluid gap and the transition point in QC2D provide reliable
quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi
Rotating black hole orbit functionals in the frequency domain
In many astrophysical problems, it is important to understand the behavior of
functions that come from rotating (Kerr) black hole orbits. It can be
particularly useful to work with the frequency domain representation of those
functions, in order to bring out their harmonic dependence upon the fundamental
orbital frequencies of Kerr black holes. Although, as has recently been shown
by W. Schmidt, such a frequency domain representation must exist, the coupled
nature of a black hole orbit's and motions makes it difficult to
construct such a representation in practice. Combining Schmidt's description
with a clever choice of timelike coordinate suggested by Y. Mino, we have
developed a simple procedure that sidesteps this difficulty. One first Fourier
expands all quantities using Mino's time coordinate . In particular,
the observer's time is decomposed with . The frequency domain
description is then built from the -Fourier expansion and the
expansion of . We have found this procedure to be quite simple to implement,
and to be applicable to a wide class of functionals. We test the procedure
using a simple test function, and then apply it in a particularly interesting
case, the Weyl curvature scalar used in black hole perturbation
theory.Comment: 16 pages, 2 figures. Submitted to Phys Rev D. New version gives a
vastly improved algorithm due to Drasco for computing the Fourier transforms.
Drasco has been added as an author. Also fixed some references and
exterminated a small herd of typos; final published versio
- …