120 research outputs found
`Similar' coordinate systems and the Roche geometry. Application
A new equivalence relation, named relation of 'similarity' is defined and
applied in the restricted three-body problem. Using this relation, a new class
of trajectories (named 'similar' trajectories) are obtained; they have the
theoretical role to give us new details in the restricted three-body problem.
The 'similar' coordinate systems allow us in addition to obtain a unitary and
an elegant demonstration of some analytical relations in the Roche geometry. As
an example, some analytical relations published in Astrophysical Journal by
Seidov in 2004 are demonstrated.Comment: 9 pages (preprint format), 9 figures, published in Astrophysics and
Space Scienc
Multimedia Retrieval by Means of Merge of Results from Textual and Content Based Retrieval Subsystems
The main goal of this paper it is to present our experiments in ImageCLEF 2009 Campaign (photo retrieval task). In 2008 we proved empirically that the Text-based Image Retrieval (TBIR) methods defeats the Content-based Image Retrieval CBIR “quality” of results, so this time we developed several experiments in which the CBIR helps the TBIR. The TBIR System [6] main improvement is the named-entity sub-module. In case of the CBIR system [3] the number of low-level features has been increased from the 68 component used at ImageCLEF 2008 up to 114 components, and only the Mahalanobis distance has been used. We propose an ad-hoc management of the topics delivered, and the generation of XML structures for 0.5 million captions of the photographs (corpus) delivered. Two different merging algorithms were developed and the third one tries to improve our previous cluster level results promoting the diversity. Our best run for precision metrics appeared in position 16th, in the 19th for MAP score, and for diversity value in position 11th, for a total of 84 submitted experiments. Our best and “only textual” experiment was the 6th one over 41
Itinerant Ferromagnetism in the Periodic Anderson Model
We introduce a novel mechanism for itinerant ferromagnetism, based on a
simple two-band model. The model includes an uncorrelated and dispersive band
hybridized with a second band which is narrow and correlated. The simplest
Hamiltonian containing these ingredients is the Periodic Anderson Model (PAM).
Using quantum Monte Carlo and analytical methods, we show that the PAM and an
extension of it contain the new mechanism and exhibit a non-saturated
ferromagnetic ground state in the intermediate valence regime. We propose that
the mechanism, which does not assume an intra atomic Hund's coupling, is
present in both the iron group and in some f electron compounds like
Ce(Rh_{1-x} Ru_x)_3 B_2, La_x Ce_{1-x} Rh_3 B_2 and the uranium
monochalcogenides US, USe, and UTe
Self-consistent solution of the Schwinger-Dyson equations for the nucleon and meson propagators
The Schwinger-Dyson equations for the nucleon and meson propagators are
solved self-consistently in an approximation that goes beyond the Hartree-Fock
approximation. The traditional approach consists in solving the nucleon
Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon
vertices; the corrections to the meson propagators are calculated using the
bare nucleon propagator and bare nucleon-meson vertices. It is known that such
an approximation scheme produces the appearance of ghost poles in the
propagators. In this paper the coupled system of Schwinger-Dyson equations for
the nucleon and the meson propagators are solved self-consistently including
vertex corrections. The interplay of self-consistency and vertex corrections on
the ghosts problem is investigated. It is found that the self-consistency does
not affect significantly the spectral properties of the propagators. In
particular, it does not affect the appearance of the ghost poles in the
propagators.Comment: REVTEX, 7 figures (available upon request), IFT-P.037/93,
DOE/ER/40427-12-N9
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Roadmap on Li-ion battery manufacturing research
Growth in the Li-ion battery market continues to accelerate, driven primarily by the increasing need for economic energy storage for electric vehicles. Electrode manufacture by slurry casting is the first main step in cell production but much of the manufacturing optimisation is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding to the electrode manufacturing value chain. Overcoming the current barriers in electrode manufacturing requires advances in materials, manufacturing technology, in-line process metrology and data analytics, and can enable improvements in cell performance, quality, safety and process sustainability. In this roadmap we explore the research opportunities to improve each stage of the electrode manufacturing process, from materials synthesis through to electrode calendering. We highlight the role of new process technology, such as dry processing, and advanced electrode design supported through electrode level, physics-based modelling. Progress in data driven models of electrode manufacturing processes is also considered. We conclude there is a growing need for innovations in process metrology to aid fundamental understanding and to enable feedback control, an opportunity for electrode design to reduce trial and error, and an urgent imperative to improve the sustainability of manufacture
Genomic insights into the origin and diversification of late maritime hunter-gatherers from the Chilean Patagonia.
Patagonia was the last region of the Americas reached by humans who entered the continent from Siberia ∼15,000-20,000 y ago. Despite recent genomic approaches to reconstruct the continental evolutionary history, regional characterization of ancient and modern genomes remains understudied. Exploring the genomic diversity within Patagonia is not just a valuable strategy to gain a better understanding of the history and diversification of human populations in the southernmost tip of the Americas, but it would also improve the representation of Native American diversity in global databases of human variation. Here, we present genome data from four modern populations from Central Southern Chile and Patagonia ( <i>n</i> = 61) and four ancient maritime individuals from Patagonia (∼1,000 y old). Both the modern and ancient individuals studied in this work have a greater genetic affinity with other modern Native Americans than to any non-American population, showing within South America a clear structure between major geographical regions. Native Patagonian Kawéskar and Yámana showed the highest genetic affinity with the ancient individuals, indicating genetic continuity in the region during the past 1,000 y before present, together with an important agreement between the ethnic affiliation and historical distribution of both groups. Lastly, the ancient maritime individuals were genetically equidistant to a ∼200-y-old terrestrial hunter-gatherer from Tierra del Fuego, which supports a model with an initial separation of a common ancestral group to both maritime populations from a terrestrial population, with a later diversification of the maritime groups
Star clusters near and far; tracing star formation across cosmic time
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio
- …