62 research outputs found
The semileptonic decays of the B_c meson
We study the semileptonic transitions B_c to \eta_c, J/\psi, D, D^*, B, B^*,
B_s, B_s^* in the framework of a relativistic constituent quark model. We use
experimental data on leptonic J/\psi decay, lattice and QCD sum rule results on
leptonic B_c decay, and on radiative \eta_c transitions to adjust the quark
model parameters. We compute all form factors of the above semileptonic
B_c-transitions and give predictions for various semileptonic B_c decay modes
including their \tau-modes when they are kinematically accessible. The
implications of heavy quark symmetry for the semileptonic decays are discussed
and are shown to be manifest in our explicit relativistic quark model
calculation. A comparison of our results with the results of other calculations
is performed.Comment: 31 pages Latex (uses epsf, revtex). Section II expanded, typos
corrected. This version will appear in Phys. Rev.
Rho GTPase function in flies: insights from a developmental and organismal perspective.
Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development
The control of respiration of isolated liver cells
SIGLEAvailable from British Library Document Supply Centre- DSC:D60903 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …