521 research outputs found
Generation of two-mode nonclassical states and a quantum phase gate operation in trapped ion cavity QED
We propose a scheme to generate nonclassical states of a quantum system,
which is composed of the one-dimensional trapped ion motion and a single cavity
field mode. We show that two-mode SU(2) Schr\"odinger-cat states, entangled
coherent states, two-mode squeezed vacuum states and their superposition can be
generated. If the vibration mode and the cavity mode are used to represent
separately a qubit, a quantum phase gate can be implemented.Comment: to appear in PR
Generation of arbitrary two dimensional motional state of a trapped ion
We present a scheme to generate an arbitrary two-dimensional quantum state of
motion of a trapped ion. This proposal is based on a sequence of laser pulses,
which are tuned appropriately to control transitions on the sidebands of two
modes of vibration. Not more than laser pulses are needed to
generate a pure state with upper phonon number and in the and
direction respectively.Comment: to appear in PR
Multi-Phase Feature Representation Learning for Neurodegenerative Disease Diagnosis
Feature learning with high dimensional neuroimaging features has been explored for the applications on neurodegenerative diseases. Low-dimensional biomarkers, such as mental status test scores and cerebrospinal fluid level, are essential in clinical diagnosis of neurological disorders, because they could be simple and effective for the clinicians to assess the disorder’s progression and severity. Rather than only using the low-dimensional biomarkers as inputs for decision making systems, we believe that such low-dimensional biomarkers can be used for enhancing the feature learning pipeline. In this study, we proposed a novel feature representation learning framework, Multi-Phase Feature Representation (MPFR), with low-dimensional biomarkers embedded. MPFR learns high-level neuroimaging features by extracting the associations between the low-dimensional biomarkers and the high-dimensional neuroimaging features with a deep neural network. We validated the proposed framework using the Mini-Mental-State-Examination (MMSE) scores as a low-dimensional biomarker and multi-modal neuroimaging data as the high-dimensional neuroimaging features from the ADNI baseline cohort. The proposed approach outperformed the original neural network in both binary and ternary Alzheimer’s disease classification tasks
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Study of
New data are presented on from a sample of 58M
events in the upgraded BES II detector at the BEPC. There is a
conspicuous signal for and a peak at higher mass which
may be fitted with . From a combined analysis with
data, the branching ratio
is at the 95%
confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
- …