242 research outputs found

    On the intrinsic thermal stability in HVDC cables

    Full text link

    Open-air-nesting honey bees Apis dorsata and Apis laboriosa differ from the cavity-nesting Apis mellifera and Apis cerana in brood hygiene behaviour

    Get PDF
    The cavity-nesting Apis mellifera and Apis cerana bees detect, uncap, and remove diseased brood. The hygiene behaviour of open-air-nesting bees Apis dorsata and Apis laboriosa was investigated in India and Nepal. Sealed A. dorsata pupae were pin-killed of deep-frozen. The workers removed 73 or 37 of damaged pin-killed pupae depending on the diameter of the pins, and only 7 of the frozen undamaged pupae. Migrating A. dorsata and A. laboriosa left unopened the sealed brood in deserted combs. Thus, A. dorsata and A. laboriosa do not open undamaged cells with dead brood. This behaviour is a more efficient mechanism in preventing the spread of diseases and parasitic mites than uncapping and removing dead pupae by A. mellifera and A. cerana. It may be beneficial for migrating A. dorsata and A. laboriosa to temporarily disuse part of the comb cells in exchange for arresting the mites there and thus reducing the increase of their population. © 2004 Elsevier Inc. All rights reserved

    Helminth control as an entry point for healthpromoting schools in Kwazulu-Natal

    Get PDF
    No Abstract

    Influence Diffusion in Social Networks under Time Window Constraints

    Full text link
    We study a combinatorial model of the spread of influence in networks that generalizes existing schemata recently proposed in the literature. In our model, agents change behaviors/opinions on the basis of information collected from their neighbors in a time interval of bounded size whereas agents are assumed to have unbounded memory in previously studied scenarios. In our mathematical framework, one is given a network G=(V,E)G=(V,E), an integer value t(v)t(v) for each node v∈Vv\in V, and a time window size λ\lambda. The goal is to determine a small set of nodes (target set) that influences the whole graph. The spread of influence proceeds in rounds as follows: initially all nodes in the target set are influenced; subsequently, in each round, any uninfluenced node vv becomes influenced if the number of its neighbors that have been influenced in the previous λ\lambda rounds is greater than or equal to t(v)t(v). We prove that the problem of finding a minimum cardinality target set that influences the whole network GG is hard to approximate within a polylogarithmic factor. On the positive side, we design exact polynomial time algorithms for paths, rings, trees, and complete graphs.Comment: An extended abstract of a preliminary version of this paper appeared in: Proceedings of 20th International Colloquium on Structural Information and Communication Complexity (Sirocco 2013), Lectures Notes in Computer Science vol. 8179, T. Moscibroda and A.A. Rescigno (Eds.), pp. 141-152, 201

    The Fluctuating Phenotype of the Lymphohematopoietic Stem Cell with Cell Cycle Transit

    Get PDF
    The most primitive engrafting hematopoietic stem cell has been assumed to have a fixed phenotype, with changes in engraftment and renewal potential occurring in a stepwise irreversible fashion linked with differentiation. Recent work shows that in vitro cytokine stimulation of murine marrow cells induces cell cycle transit of primitive stem cells, taking 40 h for progression from G0 to mitosis and 12 h for subsequent doublings. At 48 h of culture, progenitors are expanded, but stem cell engraftment is markedly diminished. We have investigated whether this effect on engraftment was an irreversible step or a reversible plastic feature correlated with cell cycle progression. Long-term engraftment (2 and 6 mo) of male BALB/c marrow cells exposed in vitro to interleukin (IL)-3, IL-6, IL-11, and steel factor was assessed at 2–4-h intervals of culture over 24–48 h using irradiated female hosts; the engraftment phenotype showed marked fluctuations over 2–4-h intervals, with engraftment nadirs occurring in late S and early G2. These data show that early stem cell regulation is cell cycle based, and have critical implications for strategies for stem cell expansion and engraftment or gene therapy, since position in cell cycle will determine whether effective engraftment occurs in either setting
    • …
    corecore