575 research outputs found
Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell
The erbium atomic system is a promising candidate for an atomic Bose-Einstein
condensate of atoms with a non-vanishing orbital angular momentum ()
of the electronic ground state. In this paper we report on the frequency
stabilization of a blue external cavity diode laser system on the 400.91
laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy
is applied within a hollow cathode discharge tube to the corresponding
electronic transition of several of the erbium isotopes. Using the technique of
frequency modulation spectroscopy, a zero-crossing error signal is produced to
lock the diode laser frequency on the atomic erbium resonance. The latter is
taken as a reference laser to which a second main laser system, used for laser
cooling of atomic erbium, is frequency stabilized
Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation
On the basis of recent investigations, a newly developed analytical procedure
is used for constructing a wide class of localized solutions of the controlled
three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the
dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is
decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a
one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a
variational condition for the controlling potential. Then, the above class of
localized solutions are constructed as the product of the solutions of the
transverse and longitudinal equations. On the basis of these exact 3D
analytical solutions, a stability analysis is carried out, focusing our
attention on the physical conditions for having collapsing or non-collapsing
solutions.Comment: 21 pages, 14 figure
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Search for Anomalous Couplings in the Higgs Sector at LEP
Anomalous couplings of the Higgs boson are searched for through the processes
e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70
GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity
collected with the L3 detector at LEP at centre-of-mass energies
sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H
-> Z\gamma and H -> WW^(*) are considered and no evidence is found for
anomalous Higgs production or decay. Limits on the anomalous couplings d, db,
Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H
-> gamma gamma and H -> Z gamma decay rates
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
Z Boson Pair-Production at LEP
Events stemming from the pair-production of Z bosons in e^+e^- collisions are
studied using 217.4 pb^-1 of data collected with the L3 detector at
centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events
with b quarks is also investigated.
Combining these events with those collected at lower centre-of-mass energies,
the Standard Model predictions for the production mechanism are verified. In
addition, limits are set on anomalous couplings of neutral gauge bosons and on
effects of extra space dimensions
Neutral-Current Four-Fermion Production in e+e- Interactions at LEP
Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of
data collected with the L3 detector at LEP at centre-of-mass energies
root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and
llvv, where l denotes either an electron or a muon. Their cross sections are
measured and found to agree with the Standard Model predictions. In addition,
the e+e- -> Zgamma* -> ffff process is studied and its total cross section at
the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/-
0.03 pb, where the first uncertainty is statistical and the second systematic,
in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass
spectra of the qqll final states are analysed to search for the possible
production of a new neutral heavy particle, for which no evidence is found
- âŠ