145 research outputs found
Absorption of electromagnetic and gravitational waves by Kerr black holes
We calculate the absorption cross section for planar waves incident upon Kerr black holes, and present
a unified picture for scalar, electromagnetic and gravitational waves. We highlight the spin-helicity effect
that arises from a coupling between the rotation of the black hole and the helicity of a circularlypolarized
wave. For the case of on-axis incidence, we introduce an extended ‘sinc approximation’ to
quantify the spin-helicity effect in the strong-field regime
Follow-up infarct volume as a mediator of endovascular treatment effect on functional outcome in ischaemic stroke
Objective: The putative mechanism for the favourable effect of endovascular treatment (EVT) on functional outcome after acute ischaemic stroke is preventing follow-up infarct volume (FIV) progression. We aimed to assess to what extent difference in FIV explains the effect of EVT on functional outcome in a randomised trial of EVT versus no EVT (MR CLEAN). Methods: FIV was assessed on non-contrast CT scan 5–7 days after stroke. Functional outcome was the score on the modified Rankin Scale at 3 months. We tested the causal pathway from intervention, via FIV to functional outcome with a mediation model, using linear and ordinal regression, adjusted for relevant baseline covariates, including stroke severity. Explained effect was assessed by taking the ratio of the log odds ratios of treatment with and without adjustment for FIV. Results: Of the 500 patients included in MR CLEAN, 60 died and four patients underwent hemicraniectomy before FIV was assessed, leaving 436 patients for analysis. Patients in the intervention group had better functional outcomes (adjusted common odds ratio (acOR) 2.30 (95% CI 1.62–3.26) than controls and smaller FIV (median 53 vs. 81 ml) (difference 28 ml; 95% CI 13–41). Smaller FIV was associated with better outcome (acOR per 10 ml 0.60, 95% CI 0.52–0.68). After adjustment for FIV the effect of intervention on functional outcome decreased but remained substantial (acOR 2.05, 95% CI 1.44–2.91). This implies that preventing FIV progression explains 14% (95% CI 0–34) of the beneficial effect of EVT on outcome. Conclusion: The effect of EVT on FIV explains only part of the treatment effect on functional outcome. Key Points: • Endovascular treatment in acute ischaemic stroke patients prevents progression of follow-up infarct volume on non-contrast CT at 5–7 days.• Follow-up infarct volume was related to functional outcome, but only explained a modest part of the effect of intervention on functional outcome.• A large proportion of treatment effect on functional outcome remains unexplained, suggesting FIV alone cannot be used as an early surrogate imaging marker of functional outcome
Value of thrombus CT Characteristics in Patients with Acute Ischemic Stroke
BACKGROUND AND PURPOSE: Thrombus CT characteristics might be useful for patient selection for intra-arterial treatment. Our objective was to study the association of thrombus CT characteristics with outcome and treatment effect in patients with acute ischemic stroke. MATERIALS AND METHODS: We included 199 patients for whom thin-section NCCT and CTA within 30 minutes from each other were available in the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute ischemic stroke in the Netherlands (MR CLEAN) study. We assessed the following thrombus characteristics: location, distance from ICA terminus to thrombus, length, volume, absolute and relative density
Big Bang nucleosynthesis and cosmic microwave background constraints on the time variation of the Higgs vacuum expectation value
We derive constraints on the time variation of the Higgs vacuum expectation
value through the effects on Big Bang nucleosynthesis (BBN) and the
cosmic microwave background (CMB). In the former case, we include the
(previously-neglected) effect of the change in the deuteron binding energy,
which alters both the He and deuterium abundances significantly. We find
that the current BBN limits on the relative change in \higgs are , where the
exact limits depend on the model we choose for the dependence of the deuteron
binding energy on \higgs.The limits from the current CMB data are much weaker.Comment: 5 pages including 5 figures, accepted for publication in Phys. Rev.
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at GeV
We present first measurements of the evolution of the differential transverse
momentum correlation function, {\it C}, with collision centrality in Au+Au
interactions at GeV. {\it C} exhibits a strong dependence
on collision centrality that is qualitatively similar to that of number
correlations previously reported. We use the observed longitudinal broadening
of the near-side peak of {\it C} with increasing centrality to estimate the
ratio of the shear viscosity to entropy density, , of the matter formed
in central Au+Au interactions. We obtain an upper limit estimate of
that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
- …