28 research outputs found

    Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1: Application of pre-mRNA analysis and chromatin immunoprecipitation to assess formation of functional transcriptional complexes

    Get PDF
    The homeodomain factor Pdx-1 regulates an array of genes in the developing and mature pancreas, but whether regulation of each specific gene occurs by a direct mechanism (binding to promoter elements and activating basal transcriptional machinery) or an indirect mechanism (via regulation of other genes) is unknown. To determine the mechanism underlying regulation of the insulin gene by Pdx-1, we performed a kinetic analysis of insulin transcription following adenovirus-mediated delivery of a small interfering RNA specific for pdx-1 into insulinoma cells and pancreatic islets to diminish endogenous Pdx-1 protein, insulin transcription was assessed by measuring both a long half-life insulin mRNA (mature mRNA) and a short half-life insulin pre-mRNA species by real-time reverse transcriptase-PCR. Following progressive knock-down of Pdx-1 levels, we observed coordinate decreases in pre-mRNA levels (to about 40% of normal levels at 72 h). In contrast, mature mRNA levels showed strikingly smaller and delayed declines, suggesting that the longer half-life of this species underestimates the contribution of Pdx-1 to insulin transcription. Chromatin immunoprecipitation assays revealed that the decrease in insulin transcription was associated with decreases in the occupancies of Pdx-1 and p300 at the proximal insulin promoter. Although there was no corresponding change in the recruitment of RNA polymerase II to the proximal promoter, its recruitment to the insulin coding region was significantly reduced. Our results suggest that Pdx-1 directly regulates insulin transcription through formation of a complex with transcriptional coactivators on the proximal insulin promoter. This complex leads to enhancement of elongation by the basal transcriptional machinery. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc

    The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells

    Get PDF
    We have previously described rat insulinoma INS-1 derived cell lines with robust or poor glucose-stimulated insulin secretion (GSIS). In the current study, we have further resolved these lines into three classes: class 1, glucose-unresponsive glucagon-expressing; class 2, glucose-unresponsive glucagon-negative; and class 3, glucose-responsive glucagon-negative. The transcription factor Nkx2.2 was expressed with relative abundance of 3.3, 1.0, and 1.0 in class 1, class 2, and class 3 cells, respectively, whereas Nkx6.1 expression had the opposite trend: 1.0, 2.6, and 6.4 in class 1, class 2, and class 3 cells, respectively. In class 1 cells, overexpressed Nkx6.1 suppressed glucagon expression but did not affect the levels of several other prominent beta cell transcription factors. RNA interference (RNAi)-mediated suppression of Nkx6.1 in class 3 cells resulted in a doubling of glucagon mRNA, with no effect on Pdx1 levels, whereas suppression of Pdx1 in class 3 cells caused a 12-fold increase in glucagon transcript levels, demonstrating independent effects of Nkx6.1 and Pdx1 on glucagon expression in beta cell lines. RNAi-mediated suppression of Nkx6.1 expression in class 3 cells also caused a decrease in GSIS from 13.9- to 3.7-fold, whereas suppression of Pdx1 reduced absolute amounts of insulin secretion without affecting fold response. Finally, RNAi-mediated suppression of Nkx6.1 mRNA in primary rat islets was accompanied by a significant decrease in GSIS relative to control cells. In sum, our studies have revealed roles for Nkx6.1 in suppression of glucagon expression and control of GSIS in islet beta cells

    Circulating Metabolites Associated with Albuminuria in a Hispanic/Latino Population

    Get PDF
    BACKGROUND: Albuminuria is associated with metabolic abnormalities, but these relationships are not well understood. We studied the association of metabolites with albuminuria in Hispanic/Latino people, a population with high risk for metabolic disease. METHODS: We used data from 3736 participants from the Hispanic Community Health Study/Study of Latinos, of which 16% had diabetes and 9% had an increased urine albumin-to-creatinine ratio (UACR). Metabolites were quantified in fasting serum through nontargeted mass spectrometry (MS) analysis using ultra-performance liquid chromatography-MS/MS. Spot UACR was inverse normally transformed and tested for the association with each metabolite or combined, correlated metabolites, in covariate-adjusted models that accounted for the study design. In total, 132 metabolites were available for replication in the Hypertension Genetic Epidemiology Network study ( n =300), and 29 metabolites were available for replication in the Malmö Offspring Study ( n =999). RESULTS: Among 640 named metabolites, we identified 148 metabolites significantly associated with UACR, including 18 novel associations that replicated in independent samples. These metabolites showed enrichment for D-glutamine and D-glutamate metabolism and arginine biosynthesis, pathways previously reported for diabetes and insulin resistance. In correlated metabolite analyses, we identified two modules significantly associated with UACR, including a module composed of lipid metabolites related to the biosynthesis of unsaturated fatty acids and alpha linolenic acid and linoleic acid metabolism. CONCLUSIONS: Our study identified associations of albuminuria with metabolites involved in glucose dysregulation, and essential fatty acids and precursors of arachidonic acid in Hispanic/Latino population. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_02_08_CJN09070822.mp3

    In Vivo

    No full text

    Metabolomics in Drug Discovery and Development

    No full text
    corecore