155 research outputs found

    Properties of the Soliton-Lattice State in Double-Layer Quantum Hall Systems

    Full text link
    Application of a sufficiently strong parallel magnetic field B∥>BcB_\parallel > B_{c} produces a soliton-lattice (SL) ground state in a double-layer quantum Hall system. We calculate the ground-state properties of the SL state as a function of B∥B_\parallel for total filling factor νT=1\nu_{T}=1, and obtain the total energy, anisotropic SL stiffness, Kosterlitz-Thouless melting temperature, and SL magnetization. The SL magnetization might be experimentally measurable, and the magnetic susceptibility diverges as ∣B∥−Bc∣−1|B_\parallel - B_{c}|^{-1}.Comment: 4 pages LaTeX, 1 EPS figure. Proceedings of the 12th International Conference on the Electronic Properties of Two-Dimensional Electron Systems (EP2DS-12), to be published in Physica B (1998

    Bias-voltage induced phase-transition in bilayer quantum Hall ferromagnets

    Full text link
    We consider bilayer quantum Hall systems at total filling factor ν=1\nu=1 in presence of a bias voltage Δv\Delta_v which leads to different filling factors in each layer. We use auxiliary field functional integral approach to study mean-field solutions and collective excitations around them. We find that at large layer separation, the collective excitations soften at a finite wave vector leading to the collapse of quasiparticle gap. Our calculations predict that as the bias voltage is increased, bilayer systems undergo a phase transition from a compressible state to a ν=1\nu=1 phase-coherent state {\it with charge imbalance}. We present simple analytical expressions for bias-dependent renormalized charge imbalance and pseudospin stiffness which are sensitive to the softening of collective modes.Comment: 12 pages, 5 figures. Minor changes, one reference adde

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR

    Composite fermions traversing a potential barrier

    Full text link
    Using a composite fermion picture, we study the lateral transport between two two-dimensional electron gases, at filling factor 1/2, separated by a potential barrier. In the mean field approximation, composite fermions far from the barrier do not feel a magnetic field while in the barrier region the effective magnetic field is different from zero. This produces a cutoff in the conductance when represented as a function of the thickness and height of the barrier. There is a range of barrier heights for which an incompressible liquid, at ν=1/3\nu =1/3, exists in the barrier region.Comment: 3 pages, latex, 4 figures available upon request from [email protected]. To appear in Physical Review B (RC) June 15t

    Correlations in the Sine-Gordon Model with Finite Soliton Density

    Full text link
    We study the sine-Gordon (SG) model at finite densities of the topological charge and small SG interaction constant, related to the one-dimensional Hubbard model near half-filling. Using the modified WKB approach, we find that the spectrum of the Gaussian fluctuations around the classical solution reproduces the results of the Bethe ansatz studies. The modification of the collective coordinate method allows us to write down the action, free from infra-red divergencies. The behaviour of the density-type correlation functions is non-trivial and we demonstrate the existence of leading and sub-leading asymptotes. A consistent definition of the charge-raising operator is discussed. The superconducting-type correlations are shown to decrease slowly at small soliton densities, while the spectral weight of right (left) moving fermions is spread over neighboring "4k_F" harmonics.Comment: 12 pages, 3 eps figures, REVTEX; a discussion of fermions is adde

    Solitons in polarized double layer quantum Hall systems

    Full text link
    A new manifestation of interlayer coherence in strongly polarized double layer quantum Hall systems with total filling factor ν=1\nu=1 in the presence of a small or zero tunneling is theoretically predicted. It is shown that moving (for small tunneling) and spatially localized (for zero tunneling) stable pseudospin solitons develop which could be interpreted as mobile or static charge-density excitations. The possibility of their experimental observation is also discussed.Comment: Phys. Rev. B (accepted

    Global phase diagram of bilayer quantum Hall ferromagnets

    Full text link
    We present a microscopic study of the interlayer spacing d versus in-plane magnetic field B∥B_\parallel phase diagram for bilayer quantum Hall (QH) pseudo-ferromagnets. In addition to the interlayer charge balanced commensurate and incommensurate states analyzed previously, we address the corresponding interlayer charge unbalanced "canted" QH states. We predict a large anomaly in the bilayer capacitance at the canting transition and the formation of dipole stripe domains with periods exceeding 1 micron in the canted state.Comment: 4 RevTeX pgs, 2 eps figures, submitted to PR

    Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles

    Full text link
    We present a microscopic theory of single-electron tunneling through metallic nanoparticles connected to the electrodes through molecular bridges. It combines the theory of electron transport through molecular junctions with the description of the charging dynamics on the nanoparticles. We apply the theory to study single-electron tunneling through a gold nanoparticle connected to the gold electrodes through two representative benzene-based molecules. We calculate the background charge on the nanoparticle induced by the charge transfer between the nanoparticle and linker molecules, the capacitance and resistance of molecular junction using a first-principles based Non-Equilibrium Green's Function theory. We demonstrate the variety of transport characteristics that can be achieved through ``engineering'' of the metal-molecule interaction.Comment: To appear in Phys. Rev.

    Spins, charges and currents at Domain Walls in a Quantum Hall Ising Ferromagnet

    Full text link
    We study spin textures in a quantum Hall Ising ferromagnet. Domain walls between ferro and unpolarized states at ν=2\nu=2 are analyzed with a functional theory supported by a microscopic calculation. In a neutral wall, Hartree repulsion prevents the appearance of a fan phase provoked by a negative stiffness. For a charged system, electrons become trapped as solitons at the domain wall. The size and energy of the solitons are determined by both Hartree and spin-orbit interactions. Finally, we discuss how electrical transport takes place through the domain wall.Comment: 4 pages, 3 figures include

    Persistent Spin Currents in Helimagnets

    Full text link
    We demonstrate that weak external magnetic fields generate dissipationless spin currents in the ground state of systems with spiral magnetic order. Our conclusions are based on phenomenological considerations and on microscopic mean-field theory calculations for an illustrative toy model. We speculate on possible applications of this effect in spintronic devices.Comment: 9 pages, 6 figures, updated version as published, Journal referenc
    • …
    corecore