481 research outputs found

    Meer bekend over het optreden van Lissers bij hyacint

    Get PDF
    Lissers is al een oud probleem dat vroeger zo nu en dan optrad, maar de laatste jaren een blijvend probleem is op sommige percelen. Voldoende kennis over de infectiebron, moment van overdracht en bestrijding ontbreekt nog. Na één jaar onderzoek is meer bekend geworden hoe het zit met de verspreiding en (on)mogelijkheden voor bestrijding. Helemaal voorkomen lijkt niet mogelijk, maar gestreefd kan worden om de bestrijding te velde zo optimaal mogelijk uit te voeren. Cicadenbestrijding lijkt voor mei niet nodig

    Phosphopeptide enrichment for phosphoproteomic analysis - a tutorial and review of novel materials

    Get PDF
    Significant technical advancements in phosphopeptide enrichment have enabled the identification of thousands of p-peptides (mono and multiply phosphorylated) in a single experiment. However, it is still not possible to enrich all p-peptide species in a single step. A range of new techniques and materials has been developed, with the potential to provide a step-change in phosphopeptide enrichment. The first half of this review contains a tutorial for new potential phosphoproteomic researchers; discussing the key steps of a typical phosphoproteomic experiment used to investigate canonical phosphorylation sites (serine, threonine and tyrosine). The latter half then show-cases the latest developments in p-peptide enrichment including: i) Strategies to mitigate non-specific binding in immobilized metal ion affinity chromatography and metal oxide affinity chromatography protocols; ii) Techniques to separate multiply phosphorylated peptides from monophosphorylated peptides (including canonical from non-canonical phosphorylated peptides), or to simultaneously co-enrich other post-translational modifications; iii) New hybrid materials and methods directed towards enhanced selectivity and efficiency of metal-based enrichment; iv) Novel materials that hold promise for enhanced phosphotyrosine enrichment. A combination of well-understood techniques and materials is much more effective than any technique in isolation; but the field of phosphoproteomics currently requires benchmarking of novel materials against current methodologies to fully evaluate their utility in peptide based proteoform analysis

    Factors influencing farmers' forestland-use changes over 15 years (2005–2020) in Thua Thien Hue province, Vietnam

    Get PDF
    Over the last decades, Vietnam has seen substantial shifts in forest landscape uses and associated livelihoods. We document the livelihood transformations in Nam Dong, a mountainous district of Central Vietnam, where land uses have changed from the utilisation of products from natural forests and shifting cultivation (swidden agriculture) to acacia tree-dominated plantation forestry. Forestry policies (forestland allocation, plantation development agendas), the increase in the economic value of acacia, and household livelihood assets are the primary factors driving these changes. We also found that there are differences in the access to and ownership of forestland with regard to households of different communities and between poor vs wealthy households. Therefore, careful attention needs to be paid to guide future land use policies in the area to foster social and ecological sustainability. HIGHLIGHTS • Major livelihood and forestland-use changes have taken place in central Vietnam over the last two decades. • There has been widespread conversion of forestland (degraded natural forests, swidden land) and cropland to acacia plantations. • Household-scale forestland use changes were primarily driven by forestry policies, the market for woodchips, and land resource access. • There is inequality in access to and ownership of forestland between poor and wealthier households in the mountain district of Vietnam. • Cases of illegal forestland conversions pose challenges to ensuring sustainable forest landscapes

    Electroactive biofilms: new means for electrochemistry

    Get PDF
    This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with stainless steel ultra-microelectrodes under constant potential electrolysis at )0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative correlation between biofilm morphology and current was established. In compost, the oxidation process was investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few days, up to 60 mA m)2. Adding 10 mM acetate to the compost amplified the current density to 145 mA m)2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and seawaters that have been predominantly investigated until now, may be able to produce electrochemically active biofilm

    Glasses in hard spheres with short-range attraction

    Full text link
    We report a detailed experimental study of the structure and dynamics of glassy states in hard spheres with short-range attraction. The system is a suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear polymer which induces a depletion attraction between the particles. Observation of crystallization reveals a re-entrant glass transition. Static light scattering shows a continuous change in the static structure factors upon increasing attraction. Dynamic light scattering results, which cover 11 orders of magnitude in time, are consistent with the existence of two distinct kinds of glasses, those dominated by inter-particle repulsion and caging, and those dominated by attraction. Samples close to the `A3 point' predicted by mode coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure

    Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources

    Get PDF
    Background Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. Results Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (− 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (− 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. Conclusions These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response

    Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data

    Get PDF
    We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination

    Charge Transport Through Open, Driven Two-Level Systems with Dissipation

    Full text link
    We derive a Floquet-like formalism to calculate the stationary average current through an AC driven double quantum dot in presence of dissipation. The method allows us to take into account arbitrary coupling strengths both of a time-dependent field and a bosonic environment. We numerical evaluate a truncation scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.

    Genetic Burden of TNNI3K in Diagnostic Testing of Patients With Dilated Cardiomyopathy and Supraventricular Arrhythmias

    Get PDF
    BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays.RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.</p
    corecore