430 research outputs found
Marking to Market and Inefficient Investment Decisions
We examine how mark-to-market accounting affects the investment decisions of managers with reputation concerns. Reporting the current market value of a firm’s assets can help mitigate agency problems because it provides outsiders (e.g., shareholders) with new information against which the management’s decisions can be evaluated. However, the fact that the assets’ market value is informative can also have a negative side effect: Managers may shy away from investments that indicate conflicting private information and would damage their reputation. This effect can lead to ineffcient investment decisions and make marking to market less desirable when market prices are more informative
Mechanosensitive Self-Replication Driven by Self-Organization
Self-replicating molecules are likely to have played an important role in the origin of life, and a small number of fully synthetic self-replicators have already been described. Yet it remains an open question which factors most effectively bias the replication toward the far-from-equilibrium distributions characterizing even simple organisms. We report here two self-replicating peptide-derived macrocycles that emerge from a small dynamic combinatorial library and compete for a common feedstock. Replication is driven by nanostructure formation, resulting from the assembly of the peptides into fibers held together by β sheets. Which of the two replicators becomes dominant is influenced by whether the sample is shaken or stirred. These results establish that mechanical forces can act as a selection pressure in the competition between replicators and can determine the outcome of a covalent synthesis.
Timing of Optical Maturation of Recently Exposed Material on Ceres
On Ceres, multispectral imaging data from the Dawn spacecraft show a distinct bluish characteristic for recently exposed material from the subsurface in, for example, crater ejecta. Ejecta blankets of presumably old craters show a more reddish spectrum. We selected areas in which fresh material from the Cerean subsurface was exposed at a specific time in the past, and no later geologic process is expected to have changed its surface composition or its cratering record. For each area, we determined two color ratios and the crater retention age. The measured color ratios show an exponential diminishment of the bluish characteristic over time. Although the cause of the color change remains uncertain, the time-dependent change in spectral properties is evident, which could help identify the process
Tumor microenvironment remodeling by an engineered oncolytic adenovirus results in improved outcome from PD-L1 inhibition
Checkpoint inhibitors have revolutionized cancer therapy and validated immunotherapy as an approach. Unfortunately, responses are seen in a minority of patients. Our objective is to use engineered adeno- viruses designed to increase lymphocyte trafficking and cytokine production at the tumor, to assess if they increase the response rate to checkpoint inhibition, as these features have been regarded as predictive for the responses. When Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (an oncolytic adenovirus coding for TNFa and IL-2, also known as TILT-123) and checkpoint inhibitors were used together in fresh urological tumor histo- cultures, a significant shift toward immune activity (not only tumor necrosis alpha and interleukin-2 but also interferon gamma and granzyme B) and increased T-cell trafficking signals (CXCL10) was observed. In vivo, our viruses enabled an anti-PD-L1 (a checkpoint inhibitor) delivering complete responses in all the treated animals (hazard ratios versus anti-PD-L1 alone 0.057 [0.007; 0.451] or virotherapy alone 0.067 [0.011; 0.415]). To conclude, when an engineered oncolytic adenovirus was utilized to modify the tumor microenvironment towards what meta-analyses have pointed as predictive markers for checkpoint inhibitory therapy, the response to them increased synergistically. Of note, key findings were confirmed in fresh patient-derived tumor explants.Peer reviewe
the geomorphology of ceres
### INTRODUCTION Observations of Ceres, the largest object in the asteroid belt, have suggested that the dwarf planet is a geologically differentiated body with a silicate core and an ice-rich mantle. Data acquired by the Dawn spacecraft were used to perform a three-dimensional characterization of the surface to determine if the geomorphology of Ceres is consistent with the models of an icy interior. ### RATIONALE Instruments on Dawn have collected data at a variety of resolutions, including both clear-filter and color images. Digital terrain models have been derived from stereo images. A preliminary 1:10 M scale geologic map of Ceres was constructed using images obtained during the Approach and Survey orbital phases of the mission. We used the map, along with higher-resolution imagery, to assess the geology of Ceres at the global scale, to identify geomorphic and structural features, and to determine the geologic processes that have affected Ceres globally. ### RESULTS Impact craters are the most prevalent geomorphic feature on Ceres, and several of the craters have fractured floors. Geomorphic analysis of the fracture patterns shows that they are similar to lunar Floor-Fractured Craters (FFCs), and an analysis of the depth-to-diameter ratios shows that they are anomalously shallow compared with average Ceres craters. Both of these factors are consistent with FFC floors being uplifted due to an intrusion of cryomagma. Kilometer-scale linear structures cross much of Ceres. Some of these structures are oriented radially to large craters and most likely formed due to impact processes. However, a set of linear structures present only on a topographically high region do not have any obvious relationship to impact craters. Geomorphic analysis suggests that they represent subsurface faults and might have formed due to crustal uplift by cryomagmatic intrusion. Domes identified across the Ceres surface present a wide range of sizes ( 100 km), basal shapes, and profiles. Whether a single formation mechanism is responsible for their formation is still an open question. Cryovolcanic extrusion is one plausible process for the larger domes, although most small mounds (<10-km diameter) are more likely to be impact debris. Differences in lobate flow morphology suggest that multiple emplacement processes have operated on Ceres, where three types of flows have been identified. Type 1 flows are morphologically similar to ice-cored flows on Earth and Mars. Type 2 flows are comparable to long-runout landslides. Type 3 flows morphologically resemble the fluidized ejecta blankets of rampart craters, which are hypothesized to form by impact into ice-rich ground. ### CONCLUSION The global trend of lobate flows suggests that differences in their geomorphology could be explained by variations in ice content and temperature at the near surface. Geomorphic and topographic analyses of the FFCs suggest that cryomagmatism is active on Ceres, whereas the large domes are possibly formed by extrusions of cryolava. Although spectroscopic analysis to date has identified water ice in only one location on Ceres, the identification of these potentially ice-related features suggests that there may be more ice within localized regions of Ceres' crust. ![Figure][1] Dawn high-altitude mapping orbit imagery (140 meters per pixel) of example morphologic features. ( A ) Occator crater; arrows point to floor fractures. ( B ) Linear structures, denoted by arrows. ( C ) A large dome at 42° N, 10° E, visible in the elevation map. ( D ) A small mound at 45.5° S, 295.7° E. ( E ) Type 1 lobate flow; arrows point to the flow front. Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust. [1]: pending:ye
The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour
Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect
- …