1,086 research outputs found
Self-Consistent Gravitational Chaos
The motion of stars in the gravitational potential of a triaxial galaxy is
generically chaotic. However, the timescale over which the chaos manifests
itself in the orbital motion is a strong function of the degree of central
concentration of the galaxy. Here, chaotic diffusion rates are presented for
orbits in triaxial models with a range of central density slopes and nuclear
black-hole masses. Typical diffusion times are found to be less than a galaxy
lifetime in triaxial models where the density increases more rapidly than 1/r
at the center, or which contain black holes with masses that exceed roughly
0.1% of the galaxy mass. When the mass of a central black hole exceeds roughly
0.02 times the mass of the galaxy, there is a transition to global
stochasticity and the galaxy evolves to an axisymmetric shape in little more
than a crossing time. This rapid evolution may provide a negative feedback
mechanism that limits the mass of nuclear black holes to a few percent of the
stellar mass of a galaxy.Comment: 15 Tex pages, 7 Postscript figures. To appear in the Twelfth Annual
Florida Workshop in Nonlinear Astronomy and Physics: Long Range Correlations
in Astrophysical and Other Systems, eds. J. R. Buchler, J. Dufty and H.
Kandru
Outskirts of Distant Galaxies In Absorption
QSO absorption spectroscopy provides a sensitive probe of both the neutral
medium and diffuse ionized gas in the distant Universe. It extends 21cm maps of
gaseous structures around low-redshift galaxies both to lower gas column
densities and to higher redshifts. Combining galaxy surveys with
absorption-line observations of gas around galaxies enables comprehensive
studies of baryon cycles in galaxy outskirts over cosmic time. This Chapter
presents a review of the empirical understanding of the cosmic neutral gas
reservoir from studies of damped Lya absorbers (DLAs). It describes the
constraints on the star formation relation and chemical enrichment history in
the outskirts of distant galaxies from DLA studies. A brief discussion of
available constraints on the ionized circumgalactic gas from studies of lower
column density Lya absorbers and associated ionic absorption transitions is
presented at the end.Comment: 45 pages, 7 figures, invited review, Book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Variation of Bar Strength with Central Velocity Dispersion in Spiral Galaxies
We investigate the variation of bar strength with central velocity dispersion
in a sample of barred spiral galaxies. The bar strength is characterized by
, the maximal tangential perturbation associated with the bar, normalized
by the mean axisymmetric force. It is derived from the galaxy potentials which
are obtained using near-infrared images of the galaxies. However, is
sensitive to bulge mass. Hence we also estimated bar strengths from the
relative Fourier intensity amplitude () of bars in near-infrared images.
The central velocity dispersions were obtained from integral field spectroscopy
observations of the velocity fields in the centers of these galaxies; it was
normalized by the rotation curve amplitude obtained from HI line width for each
galaxy. We found a correlation between bar strengths (both and )
and the normalized central velocity dispersions in our sample. This suggests
that bars weaken as their central components become kinematically hotter. This
may have important implications for the secular evolution of barred galaxies.Comment: To appear in Ap&S
Quasars and their host galaxies
This review attempts to describe developments in the fields of quasar and
quasar host galaxies in the past five. In this time period, the Sloan and 2dF
quasar surveys have added several tens of thousands of quasars, with Sloan
quasars being found to z>6. Obscured, or partially obscured quasars have begun
to be found in significant numbers. Black hole mass estimates for quasars, and
our confidence in them, have improved significantly, allowing a start on
relating quasar properties such as radio jet power to fundamental parameters of
the quasar such as black hole mass and accretion rate. Quasar host galaxy
studies have allowed us to find and characterize the host galaxies of quasars
to z>2. Despite these developments, many questions remain unresolved, in
particular the origin of the close relationship between black hole mass and
galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
It is only now, with low-frequency radio telescopes, long exposures with
high-resolution X-ray satellites and gamma-ray telescopes, that we are
beginning to learn about the physics in the periphery of galaxy clusters. In
the coming years, Sunyaev-Zeldovich telescopes are going to deliver further
great insights into the plasma physics of these special regions in the
Universe. The last years have already shown tremendous progress with detections
of shocks, estimates of magnetic field strengths and constraints on the
particle acceleration efficiency. X-ray observations have revealed shock fronts
in cluster outskirts which have allowed inferences about the microphysical
structure of shocks fronts in such extreme environments. The best indications
for magnetic fields and relativistic particles in cluster outskirts come from
observations of so-called radio relics, which are megaparsec-sized regions of
radio emission from the edges of galaxy clusters. As these are difficult to
detect due to their low surface brightness, only few of these objects are
known. But they have provided unprecedented evidence for the acceleration of
relativistic particles at shock fronts and the existence of muG strength fields
as far out as the virial radius of clusters. In this review we summarise the
observational and theoretical state of our knowledge of magnetic fields,
relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
The Milky Way Bulge: Observed properties and a comparison to external galaxies
The Milky Way bulge offers a unique opportunity to investigate in detail the
role that different processes such as dynamical instabilities, hierarchical
merging, and dissipational collapse may have played in the history of the
Galaxy formation and evolution based on its resolved stellar population
properties. Large observation programmes and surveys of the bulge are providing
for the first time a look into the global view of the Milky Way bulge that can
be compared with the bulges of other galaxies, and be used as a template for
detailed comparison with models. The Milky Way has been shown to have a
box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an
additional spheroidal component. In this review we summarise the global
chemical abundances, kinematics and structural properties that allow us to
disentangle these multiple components and provide constraints to understand
their origin. The investigation of both detailed and global properties of the
bulge now provide us with the opportunity to characterise the bulge as observed
in models, and to place the mixed component bulge scenario in the general
context of external galaxies. When writing this review, we considered the
perspectives of researchers working with the Milky Way and researchers working
with external galaxies. It is an attempt to approach both communities for a
fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen
E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
- …