2 research outputs found

    Correcci贸n de la deriva en sistemas de seguimiento solar a trav茅s de control de lazo cerrado

    Get PDF
    CIES2020 - XVII Congresso Ib茅rico e XIII Congresso Ibero-americano de Energia SolarRESUMEN: Los sistemas de seguimiento solar de dos ejes en aplicaciones de concentraci贸n solar requieren una mayor precisi贸n en el seguimiento autom谩tico de la posici贸n aparente del Sol, esto con el fin de mantener la radiaci贸n solar concentrada en una posici贸n fija en el receptor del sistema, ya que una m铆nima variaci贸n se traduce en un desplazamiento (deriva) del spot de concentraci贸n de la zona de inter茅s. Este trabajo se centra en la discusi贸n de los m茅todos implementados para la soluci贸n de los problemas de deriva y correcci贸n de los 谩ngulos de elevaci贸n y acimut en los dispositivos de seguimiento solar. Para llevar a cabo la evaluaci贸n de la correcci贸n de la deriva, se emplearon dos dispositivos de seguimiento solar de dos ejes de movimiento. Un Heli贸stato de 36 m2 (E3) ubicado en la Plataforma Solar de Hermosillo, Sonora, M茅xico. El segundo es un concentrador solar reflectivo de no imagen tipo Fresnel para la caracterizaci贸n de celdas fotovoltaicas ubicado en el IER-UNAM en Temixco, Morelos, M茅xico. El an谩lisis planteado en este documento se basa principalmente en la comparativa de los resultados obtenidos a partir de implementar una estrategia de control de lazo abierto y cerrado. El control de lazo abierto consiste en un c贸digo de programaci贸n que realiza el c谩lculo de la posici贸n del Sol mediante algoritmos propuestos por distintos autores, y que permiten enviar se帽ales de comando a los actuadores de los ejes de acimut y elevaci贸n en ambos dispositivos de seguimiento. Para la metodolog铆a de lazo cerrado se utiliza un sistema 贸ptico de retroalimentaci贸n que trata de un dispositivo de visi贸n (CCD) que permite observar la posici贸n del Sol en tiempo real.ABSTRACT: Two axis solar tracking systems require high precision regarding automatic tracking of apparent sun position for solar concentration applications. This, with the aim of maintaining the concentrated solar radiation in a fixed position in the system麓s receiver. This is so, because a minimum variation results in a deviation (drift) of the solar image concentrated in the area of interest. This work focuses on a discussion of implemented methods for solving drift problems and a correction of elevation and azimuth angles in solar tracking devices. Two sun tracking devices of two axes movement were used in order to evaluate drift correction. The first one was a 36 m2 heliostat (named E3), located in the Solar Platform in Hermosillo, Sonora, M茅xico. The second tracking device was a solar concentrator Fresnel type for characterizing photovoltaic cells (FRESNEL) located at IER-UNAM, Temixco, Morelos, M茅xico. The analysis of this document is mainly based on the comparison of obtained results from implementing an open-loop and close-loop control strategy. Open-loop control consists of a program code that calculates the Sun's position using algorithms suggested by different authors, it allows send command signals to elevation and azimuth axis actuators on both tracking devices. Closed-loop methodology uses an optical feedback system, which refers to a vision device (webcam) that allows observing in real time the Sun麓s position.info:eu-repo/semantics/publishedVersio
    corecore