61 research outputs found
Vertical distribution of stars and gas in a galactic disk
We study the vertical density distribution of stars and gas (HI and H_2) in a
galactic disk which is embedded in a dark matter halo. The new feature of this
work is the inclusion of gas, and the gravitational coupling between stars and
gas, which has led to a more realistic treatment of a multi-component galactic
disk. The gas gravity is shown to be crucially important despite the low gas
mass fraction. This approach physically explains the observed scaleheight
distribution of all the three disk components, including the long-standing
puzzle (Oort 1962) of a constant HI scaleheight observed in the inner Galaxy.
The above model is applied to two external galaxies: NGC 891 and NGC 4565, and
the stellar disk is shown to be not strictly flat as was long believed but
rather it shows a moderate flaring of a factor of about 2 within the optical
radius.Comment: 4 pages, 2 figures; to appear in the Proceedings of "Island
Universes: Structure and evolution of disk galaxies" (Terschelling, The
Netherlands, July 2005), ed. R. de Jon
Relativistic Effects in the Motion of the Moon
The main general relativistic effects in the motion of the Moon are briefly
reviewed. The possibility of detection of the solar gravitomagnetic
contributions to the mean motions of the lunar node and perigee is discussed.Comment: LaTeX file, no figures, 13 pages, to appear in: 'Testing relativistic
gravity in space', edited by C. Laemmerzahl, C.W.F. Everitt and F.W. Hehl
(Springer, Berlin 2000
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Cointegration analysis with state space models
Abstract: This paper presents and exemplifies results developed for cointegration analysis with state space models by Bauer and Wagner in a series of papers. Unit root processes, cointegration and polynomial cointegration are defined. Based upon these definitions the major part of the paper discusses how state space models, which are equivalent to VARMA models, can be fruitfully employed for cointegration analysis. By means of detailing the cases most relevant for empirical applications, the I(1), MFI(1) and I(2) cases, a canonical representation is developed and thereafter some available statistical results are briefly mentioned.
Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation
Photosynthetic CO2 uptake by oceanic phytoplankton and subsequent export of particulate organic carbon (POC) to the ocean interior comprises a globally significant biological carbon pump, controlled in part by the composition of the planktonic community. The strength and efficiency of this pump depends upon the balance of particle production in the euphotic zone and remineralization of those particles in the mesopelagic (defined here as depths between 150 and 300 m), but how these processes respond to climate-driven changes in the physical environment is not completely understood. In the Sargasso Sea, from ~1996–2007, we have observed a decade-long >50% increase in euphotic zone integrated autotrophic biomass (estimated from chlorophyll TChl-?), prokaryotic phytoplankton, primary production and shallow (150 m) POC export coinciding with a shift in the mean phase of the winter North Atlantic Oscillation (NAO) from consistently positive to neutral but variable. During this same period mesopelagic POC flux attenuation has doubled such that carbon sequestration below 300 m, the maximum winter/spring ventilation depth, has not changed. The increased mesopelagic POC attenuation appears mediated by changes in plankton community composition and metabolic activity in both the euphotic and mesopelagic zones. These changes are counter to extant hypotheses regarding inter-relationships between phytoplankton community composition, productivity and carbon export, and have significant impacts on how the Sargasso Sea ecosystem, at least, is modeled. Moreover, these time-series observations suggest that processes in the euphotic zone and mesopelagic are tightly coupled and should be considered together in future research
- …