2,628 research outputs found
Local charge compensation from colour preconfinement as a key to the dynamics of hadronization
If, as is commonly accepted, the colour-singlet, `preconfined', perturbative
clusters are the primary units of hadronization, then the electric charge is
necessarily compensated locally at the scale of the typical cluster mass. As a
result, the minijet electric charge is suppressed at scales that are greater
than the cluster mass. We hence argue, and demonstrate by means of Monte Carlo
simulations using HERWIG, that the scale at which charge compensation is
violated is close to the mass of the clusters involved in hadronization, and
its measurement would provide a clue to resolving the nature of the dynamics.
We repeat the calculation using PYTHIA and find that the numbers produced by
the two generators are similar. The cluster mass distribution is sensitive to
soft emission that is considered unresolved in the parton shower phase. We
discuss how the description of the splitting of large clusters in terms of
unresolved emission modifies the algorithm of HERWIG, and relate the findings
to the yet unknown underlying nonperturbative mechanism. In particular, we
propose a form of that follows from a power-enhanced beta function,
and discuss how this that governs unresolved emission may be related
to power corrections. Our findings are in agreement with experimental data.Comment: 37 pages, 20 figure
Spontaneous Breaking of Flavor Symmetry and Naturalness of Nearly Degenerate Neutrino Masses and Bi-maximal Mixing
The gauge model with flavor symmetry and three Higgs triplets is
studied. We show how the intriguing nearly degenerate neutrino mass and
bi-maximal mixing scenario comes out naturally after spontaneous breaking of
the symmetry. The hierarchy between the neutrino mass-squared differences,
which is needed for reconciling both solar and atmospheric neutrino data, is
naturally resulted from an approximate permutation symmetry. The model can also
lead to interesting phenomena on lepton-flavor violations via the
gauge interactions.Comment: 13 pages, latex, no figures, the version appearing in SCIENCE IN
CHINA (Series A), Vol.35 No.9 (2000
Electroweak Evolution Equations
Enlarging a previous analysis, where only fermions and transverse gauge
bosons were taken into account, we write down infrared-collinear evolution
equations for the Standard Model of electroweak interactions computing the full
set of splitting functions. Due to the presence of double logs which are
characteristic of electroweak interactions (Bloch-Nordsieck violation), new
infrared singular splitting functions have to be introduced. We also include
corrections related to the third generation Yukawa couplings.Comment: 15 pages, 3 figure
STAR inner tracking upgrade - A performance study
Anisotropic flow measurements have demonstrated development of partonic
collectivity in Au+Au collisions at RHIC. To understand the
partonic EOS, thermalization must be addressed. Collective motion of
heavy-flavor (c,b) quarks can be used to indicate the degree of thermalization
of the light-flavor quarks (u,d,s). Measurement of heavy-flavor quark
collectivity requires direct reconstruction of heavy-flavor hadrons in the low
\pt region. Measurement of open charm spectra to high \pt can be used to
investigate heavy-quark energy loss and medium properties. The Heavy Flavor
Tracker (HFT), a proposed upgrade to the STAR experiment at midrapidity, will
measure of open-charm hadrons to very low \pt by reconstructing their
displaced decay vertices. The innermost part of the HFT is the PIXEL detector
(made of two low mass monolithic active pixel sensor layers), which delivers a
high precision position measurement close to the collision vertex. The
Intermediate Silicon Tracker (IST), a 1-layer strip detector, is essential to
improve hit identification in the PIXEL detector when running at full RHIC-II
luminosity. Using a full GEANT simulation, open charm measurement capabilities
of STAR with the HFT will be shown. Its performance in a broad \pt range will
be demonstrated on (\pt > 0.5\mathrm{GeV}/c) and
(\pt < 10\mathrm{GeV}/c) measurements of \D meson. Results of
reconstruction of \Lc baryon in heavy-ion collisions are presented.Comment: to appear in EPJ C (Hot Quarks 2008 conference volume
Hadronization effects in event shape moments
We study the moments of hadronic event shapes in annihilation within
the context of next-to-next-to-leading order (NNLO) perturbative QCD
predictions combined with non-perturbative power corrections in the dispersive
model. This model is extended to match upon the NNLO perturbative prediction.
The resulting theoretical expression has been compared to experimental data
from JADE and OPAL, and a new value for has been determined, as
well as of the average coupling in the non-perturbative region below
GeV within the dispersive model:
\alpha_s(M_Z)&=0.1153\pm0.0017(\mathrm{exp})\pm0.0023(\mathrm{th}),\alpha_0&=0.5132\pm0.0115(\mathrm{exp})\pm0.0381(\mathrm{th}),
The precision of the value has been improved in comparison to
the previously available next-to-leading order analysis. We observe that the
resulting power corrections are considerably larger than those estimated from
hadronization models in multi-purpose event generator programs.Comment: 23 pages, 5 figures, 15 tables. Few minor changes. Version accepted
for publication in European Physical Journal C
A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations
We study numerically the Schwinger-Dyson equations for the coupled system of
gluon and ghost propagators in the Landau gauge and in the case of pure gauge
QCD. We show that a dynamical mass for the gluon propagator arises as a
solution while the ghost propagator develops an enhanced behavior in the
infrared regime of QCD. Simple analytical expressions are proposed for the
propagators, and the mass dependency on the scale and its
perturbative scaling are studied. We discuss the implications of our results
for the infrared behavior of the coupling constant, which, according to fits
for the propagators infrared behavior, seems to indicate that as .Comment: 17 pages, 7 figures - Revised version to be consistent with erratum
to appear in JHE
Predicting air-borne droplet drift from agricultural areas
Non-Peer Reviewe
Charmless Decays Based on the six-quark Effective Hamiltonian with Strong Phase Effects II
We provide a systematic study of charmless decays (
and denote pseudoscalar and vector mesons, respectively) based on an
approximate six-quark operator effective Hamiltonian from QCD. The calculation
of the relevant hard-scattering kernels is carried out, the resulting
transition form factors are consistent with the results of QCD sum rule
calculations. By taking into account important classes of power corrections
involving "chirally-enhanced" terms and the vertex corrections as well as weak
annihilation contributions with non-trivial strong phase, we present
predictions for the branching ratios and CP asymmetries of decays into
PP, PV and VV final states, and also for the corresponding polarization
observables in VV final states. It is found that the weak annihilation
contributions with non-trivial strong phase have remarkable effects on the
observables in the color-suppressed and penguin-dominated decay modes. In
addition, we discuss the SU(3) flavor symmetry and show that the symmetry
relations are generally respected
Following Gluonic World Lines to Find the QCD Coupling in the Infrared
Using a parametrization of the Wilson loop with the minimal-area law, we
calculate the polarization operator of a valence gluon, which propagates in the
confining background. This enables us to obtain the infrared freezing (i.e.
finiteness) of the running strong coupling in the confinement phase, as well as
in the deconfinement phase up to the temperature of dimensional reduction. The
momentum scale defining the onset of freezing is found both analytically and
numerically. The nonperturbative contribution to the thrust variable,
originating from the freezing, makes the value of this variable closer to the
experimental one.Comment: 25 pages, 5 figure
- …