21,554 research outputs found
Energy transfer, pressure tensor and heating of kinetic plasma
Kinetic plasma turbulence cascade spans multiple scales ranging from
macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large
scale energy, terminate the inertial range cascade and convert kinetic energy
into heat are hotly debated. Here we revisit these puzzles using fully kinetic
simulation. By performing scale-dependent spatial filtering on the Vlasov
equation, we extract information at prescribed scales and introduce several
energy transfer functions. This approach allows highly inhomogeneous energy
cascade to be quantified as it proceeds down to kinetic scales. The pressure
work, , can
trigger a channel of the energy conversion between fluid flow and random
motions, which is a collision-free generalization of the viscous dissipation in
collisional fluid. Both the energy transfer and the pressure work are strongly
correlated with velocity gradients.Comment: 28 pages, 10 figure
Calculated Momentum Dependence of Zhang-Rice States in Transition Metal Oxides
Using a combination of local density functional theory and cluster exact
diagonalization based dynamical mean field theory, we calculate many body
electronic structures of several Mott insulating oxides including undoped high
T_{c} materials. The dispersions of the lowest occupied electronic states are
associated with the Zhang-Rice singlets in cuprates and with doublets,
triplets, quadruplets and quintets in more general cases. Our results agree
with angle resolved photoemission experiments including the decrease of the
spectral weight of the Zhang--Rice band as it approaches k=0
Classification of Overlapped Audio Events Based on AT, PLSA, and the Combination of Them
Audio event classification, as an important part of Computational Auditory Scene Analysis, has attracted much attention. Currently, the classification technology is mature enough to classify isolated audio events accurately, but for overlapped audio events, it performs much worse. While in real life, most audio documents would have certain percentage of overlaps, and so the overlap classification problem is an important part of audio classification. Nowadays, the work on overlapped audio event classification is still scarce, and most existing overlap classification systems can only recognize one audio event for an overlap. In this paper, in order to deal with overlaps, we innovatively introduce the author-topic (AT) model which was first proposed for text analysis into audio classification, and innovatively combine it with PLSA (Probabilistic Latent Semantic Analysis). We propose 4 systems, i.e. AT, PLSA, AT-PLSA and PLSA-AT, to classify overlaps. The 4 proposed systems have the ability to recognize two or more audio events for an overlap. The experimental results show that the 4 systems perform well in classifying overlapped audio events, whether it is the overlap in training set or the overlap out of training set. Also they perform well in classifying isolated audio events
Fluctuation of Conductance Peak Spacings in Large Semiconductor Quantum Dots
Fluctuation of Coulomb blockade peak spacings in large two-dimensional
semiconductor quantum dots are studied within a model based on the
electrostatics of several electron islands among which there are random
inductive and capacitive couplings. Each island can accommodate electrons on
quantum orbitals whose energies depend also on an external magnetic field. In
contrast with a single island quantum dot, where the spacing distribution is
close to Gaussian, here the distribution has a peak at small spacing value. The
fluctuations are mainly due to charging effects. The model can explain the
occasional occurrence of couples or even triples of closely spaced Coulomb
blockade peaks, as well as the qualitative behavior of peak positions with the
applied magnetic field.Comment: 13 pages, 4 figures, accepted for publication in PR
Antiphase Synchronization in a Flagellar-Dominance Mutant of Chlamydomonas
Groups of beating flagella or cilia often synchronize so that neighboring
filaments have identical frequencies and phases. A prime example is provided by
the unicellular biflagellate Chlamydomonas reinhardtii, which typically
displays synchronous in-phase beating in a low-Reynolds number version of
breaststroke swimming. We report here the discovery that ptx1, a flagellar
dominance mutant of C. reinhardtii, can exhibit synchronization in precise
antiphase, as in the freestyle swimming stroke. Long-duration high-speed
imaging shows that ptx1 flagella switch stochastically between in-phase and
antiphase states, and that the latter has a distinct waveform and significantly
higher frequency, both of which are strikingly similar to those found during
phase slips that stochastically interrupt in-phase beating of the wildtype.
Possible mechanisms underlying these observations are discussed.Comment: 5 pages, 4 figure
- …