94,175 research outputs found
An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm
Gamma-Rays Produced in Cosmic-Ray Interactions and the TeV-band Spectrum of RX J1713.7-3946
We employ the Monte Carlo particle collision code DPMJET3.04 to determine the
multiplicity spectra of various secondary particles (in addition to 's)
with 's as the final decay state, that are produced in cosmic-ray
('s and 's) interactions with the interstellar medium. We derive an
easy-to-use -ray production matrix for cosmic rays with energies up to
about 10 PeV. This -ray production matrix is applied to the GeV excess
in diffuse Galactic -rays observed by EGRET, and we conclude the
non- decay components are insufficient to explain the GeV excess,
although they have contributed a different spectrum from the -decay
component. We also test the hypothesis that the TeV-band -ray emission
of the shell-type SNR RX J1713.7-3946 observed with HESS is caused by hadronic
cosmic rays which are accelerated by a cosmic-ray modified shock. By the
statistics, we find a continuously softening spectrum is strongly
preferred, in contrast to expectations. A hardening spectrum has about 1%
probability to explain the HESS data, but then only if a hard cutoff at 50-100
TeV is imposed on the particle spectrum.Comment: 3 pages; 4 figures; Contribution to the First GLAST Symposium,
Standord, 200
- …