72,783 research outputs found
Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires
Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces
Emergence of highly-designable protein-backbone conformations in an off-lattice model
Despite the variety of protein sizes, shapes, and backbone configurations
found in nature, the design of novel protein folds remains an open problem.
Within simple lattice models it has been shown that all structures are not
equally suitable for design. Rather, certain structures are distinguished by
unusually high designability: the number of amino-acid sequences for which they
represent the unique ground state; sequences associated with such structures
possess both robustness to mutation and thermodynamic stability. Here we report
that highly designable backbone conformations also emerge in a realistic
off-lattice model. The highly designable conformations of a chain of 23 amino
acids are identified, and found to be remarkably insensitive to model
parameters. While some of these conformations correspond closely to known
natural protein folds, such as the zinc finger and the helix-turn-helix motifs,
others do not resemble known folds and may be candidates for novel fold design.Comment: 7 figure
DC Spin Current Generation in a Rashba-type Quantum Channel
We propose and demonstrate theoretically that resonant inelastic scattering
(RIS) can play an important role in dc spin current generation. The RIS makes
it possible to generate dc spin current via a simple gate configuration: a
single finger-gate that locates atop and orients transversely to a quantum
channel in the presence of Rashba spin-orbit interaction. The ac biased
finger-gate gives rise to a time-variation in the Rashba coupling parameter,
which causes spin-resolved RIS, and subsequently contributes to the dc spin
current. The spin current depends on both the static and the dynamic parts in
the Rashba coupling parameter, and , respectively, and is
proportional to . The proposed gate configuration has the
added advantage that no dc charge current is generated. Our study also shows
that the spin current generation can be enhanced significantly in a double
finger-gate configuration.Comment: 4 pages,4 figure
Strain-Induced Coupling of Spin Current to Nanomechanical Oscillations
We propose a setup which allows to couple the electron spin degree of freedom
to the mechanical motions of a nanomechanical system not involving any of the
ferromagnetic components. The proposed method employs the strain induced
spin-orbit interaction of electrons in narrow gap semiconductors. We have shown
how this method can be used for detection and manipulation of the spin flow
through a suspended rod in a nanomechanical device.Comment: 4 pages, 1 figur
Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction
We present a theoretical study of the energy levels in a parabolically
confined quantum dot in the presence of the Rashba spin-orbit interaction
(SOI). The features of some low-lying states in various strengths of the SOI
are examined at finite magnetic fields. The presence of a magnetic field
enhances the possibility of the spin polarization and the SOI leads to
different energy dependence on magnetic fields applied. Furthermore, in high
magnetic fields, the spectra of low-lying states show basic features of
Fock-Darwin levels as well as Landau levels.Comment: 6 pages, 4 figures, accepted by J. Appl. Phy
- …